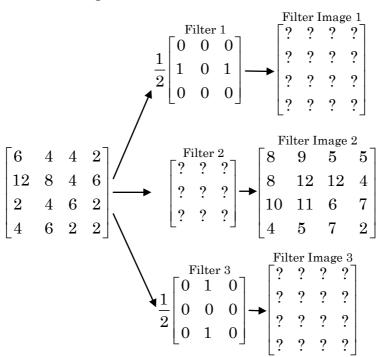
M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS)

Term-End Examination December, 2020 MMTE-003: PATTERN RECOGNITION AND IMAGE PROCESSING

Time: 2 Hours Maximum Marks: 50

Note: Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed.

1. (a) Perform histogram equalization for the 8×8 image shown in the table below : 5


Grey level (r_k)	No. of pixels (p_k)
0	8
1	10
2	10
3	2
4	12
5	16
6	4
7	2

Lot-II P. T. O.

(b) Perform the linear convolution between x(m,n) and h(m,n) as given below: 5

$$x(m,n) = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, h(m,n) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- 2. (a) How are first order derivatives used for sharpening of image? Include suitable example in support of your answer.
 - (b) A 4×4 gray scale image passes through three spatial linear shift-invariant filters, resulting in the following three filtered images:

6

Compute the following:

- (i) Filtered image 1
- (ii) filtered image 3
- (iii) Filter 2

You may assume zero padding.

- 3. (a) What is periodic noise? Discuss the parameters of noise estimation.
 - (b) Compute the image quality metrics; MSE, SNR and PSNR for the following image f(x, y) and $\hat{f}(x, y)$:

$$f(x,y) = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 2 \end{bmatrix}$$

and $\hat{f}(x, y) = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$

- 4. (a) Obtain the Huffman code for the word 'COMMITTEE'.
 - (b) Differentiate between supervised and unsupervised learning with suitable examples.

5. (a) Consider the image segment:

$$\begin{bmatrix} 128 & 128 & 128 & 64 \\ 64 & 64 & 128 & 128 \\ 32 & 8 & 64 & 128 \\ 8 & 128 & 128 & 64 \end{bmatrix}.$$

[4]

Based on the histogram, segment the image into two regions.

(b) Find the discrete Fourier transform of the image:

$$\begin{bmatrix} 2 & 8 & 6 & 4 \\ 4 & 2 & 8 & 6 \\ 6 & 4 & 2 & 8 \\ 8 & 6 & 4 & 2 \end{bmatrix}$$

- 6. (a) Write the condition when Wiener filter reduces to:
 - (i) Inverse filter
 - (ii) All pass filter

Justify your answer.

6

(b) Consider two images f_1 and f_2 as given below:

$$f_1 = \begin{bmatrix} 11 & 13 & 17 \\ 15 & 25 & 85 \\ 210 & 60 & 160 \end{bmatrix}$$

and
$$f_2 = \begin{bmatrix} 60 & 160 & 135 \\ 55 & 65 & 165 \\ 210 & 60 & 85 \end{bmatrix}$$

find $f_1 - f_2$, $f_1 + f_2$, $f_1 f_2$ and f_1 / f_2 .

- 7. (a) Draw the block diagram of digital image water marking embedding and its extraction.
 - (b) Obtain the transfer function $X(w_1, w_2)$ of a 3×3 mean filter x(m, n) and show that X(0, 0) = 1.