No. of Printed Pages : 5 MMTE-002

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS) Term-End Examination December, 2020 MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 Hours

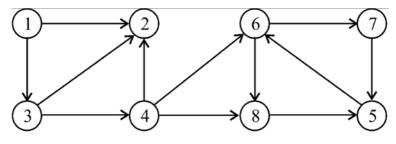
Maximum Marks : 50

Note: Attempt any four questions from Question

Nos. 1 to 5. Question No. 6 is compulsory.

 (a) Sort the following numbers using Radix sort technique : 5 789, 346, 125, 800, 543, 179, 555

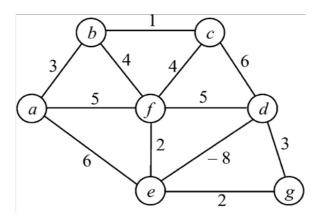
(b) Construct a B-tree with min degree 2 when the numbers are inserted in the following order: 5


1, 12, 8, 2, 25, 6, 14, 28, 17, 7

2. (a) Construct a Huffman tree for the following characters : 5

Value	Frequency
А	5
В	25
С	7
D	15
Е	4
F	12

Further, give the Huffman codes for each character corresponding to the tree you have constructed.


(b) Let d(v) be the distance of the vertex v from the source vertex and π(v) be the predecessor vertex of v. Obtain the d and π values that result from running the breadth-first search on the graph given below, using vertex 4 as the source.

		0
Activity	Start Time	Finishing Time
A1	1	3
A2	0	4
A3	1	2
A4	4	6
A5	2	9
A6	5	8
A7	3	5
A8	4	5

3. (a) Solve the following activity selection problem : 5

(b) Find the minimum spanning tree for the following graph, using Kruskal's algorithm: 5

P. T. O.

- 4. (a) Briefly explain each stage involved in using the fast Fourier transform algorithm for multiplying two polynomials of degree 250.
 - (b) Rank the following functions, in order of growth: 5

 $n!, 3^n, 2n+3, e^n, n^{\log(\log(n))}$

5. (a) Search the given pattern in the following text using the naive string matching algorithm :
3

Pattern : BARBER

Text : BERTRAND_RUSSELL

Also report the number of comparisons done by the algorithm.

(b) Find all the solutions to the following equation: 2

 $35x \equiv 20 \pmod{52}$

- (c) For the set of keys {3, 7, 9, 4, 6, 8, 12}, draw binary search trees of heights 2, 3, 4, 5 and 6.
- 6. Which of the following statements are true ? Give reasons for your answers in the form of a short proof *or* a counter-example.
 - (i) All comparison based sorting algorithms have the same worst case running time.

- (ii) A topological sort of a Directed Acyclic Graph (DAG) can be created by performing a depth-first-search on the DAG.
- (iii) $\phi(p) = p \forall$ odd primes p, where ϕ is the Euler-phi function.
- (iv) There is a unique min binary heap on the set {1, 2,, 9}.
- (v) Two sequences can have several common subsequences of the same maximum length.