M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS)

Term-End Examination
December, 2020

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 Hours
Maximum Marks : 50
Note :Attempt any four questions from Question
Nos. 1 to 5. Question No. 6 is compulsory.

1. (a) Sort the following numbers using Radix sort technique :
$789,346,125,800,543,179,555$
(b) Construct a B-tree with min degree 2 when the numbers are inserted in the following order :

$$
1,12,8,2,25,6,14,28,17,7
$$

2. (a) Construct a Huffman tree for the following characters:

Value	Frequency
A	5
B	25
C	7
D	15
E	4
F	12

Further, give the Huffman codes for each character corresponding to the tree you have constructed.
(b) Let $d(v)$ be the distance of the vertex v from the source vertex and $\pi(v)$ be the predecessor vertex of v. Obtain the d and π values that result from running the breadth-first search on the graph given below, using vertex 4 as the source. 5

3. (a) Solve the following activity selection problem :

Activity	Start Time	Finishing Time
A1	1	3
A2	0	4
A3	1	2
A4	4	6
A5	2	9
A6	5	8
A7	3	5
A8	4	5

(b) Find the minimum spanning tree for the following graph, using Kruskal's algorithm :

P. T. O.
4. (a) Briefly explain each stage involved in using the fast Fourier transform algorithm for multiplying two polynomials of degree 250.
(b) Rank the following functions, in order of growth :

$$
n!, 3^{n}, 2 n+3, e^{n}, n^{\log (\log (n))}
$$

5. (a) Search the given pattern in the following text using the naive string matching algorithm :
Pattern : BARBER

Text : BERTRAND_RUSSELL

Also report the number of comparisons done by the algorithm.
(b) Find all the solutions to the following equation :

$$
35 x \equiv 20(\bmod 52)
$$

(c) For the set of keys $\{3,7,9,4,6,8,12\}$, draw binary search trees of heights $2,3,4$, 5 and 6.
6. Which of the following statements are true ? Give reasons for your answers in the form of a short proof or a counter-example.
(i) All comparison based sorting algorithms have the same worst case running time.
(ii) A topological sort of a Directed Acyclic Graph (DAG) can be created by performing a depth-first-search on the DAG.
(iii) $\phi(p)=p \forall$ odd primes p, where ϕ is the Euler-phi function.
(iv) There is a unique min binary heap on the set $\{1,2, \ldots . ., 9\}$.
(v) Two sequences can have several common subsequences of the same maximum length.

