M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
February, 2021

MMT-003 : ALGEBRA

Time : 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Attempt any four questions from Questions no. 2 to 6. Use of calculators is not allowed.

1. State whether the following statements are $T R U E$ or $F A L S E$. Give reasons for your answers.
(i) There exists an extension field of \mathbf{Z}_{2} of order 25.
(ii) Every group of order 18 has a normal subgroup of order 2.
(iii) $9=1+1+1+3+3$ is the class equation of some group of order 9 .
(iv) Every symplectic matrix over \mathbf{R} of order 2 is an orthogonal matrix.
(v) $\mathbf{R}[x, y]$ is a PID.
2. (a) Check whether or not $\mathbf{Q}(\omega)=\mathbf{Q}\left(\omega^{2}\right)$, where ω is a non-real cube root of unity. Also find $[\mathbf{Q}(\omega): \mathbf{Q}]$.
(b) Let G be a group of order 39. Suppose that G acts on a set X having 14 elements. What are the possible values of $\left|O_{x}\right|$ for $x \in X$? Show that there exists an $x_{0} \in X$ such that $\mathrm{O}_{\mathrm{x}_{0}}=\left\{\mathrm{x}_{0}\right\}$.
(c) Check whether or not
$\rho: \mathrm{A}_{\mathrm{n}} \rightarrow \mathbf{R} \backslash\{0\}: \rho(\sigma)=\sigma(\mathrm{n})$ is a
representation of A_{n}, for $\mathrm{n} \in \mathbf{N}$.
3. (a) Given that G is a simple group of order 168, find the number of Sylow 7 -subgroups in G. How many elements are there in G having order equal to 7 ? Give reasons for your answer.
(b) Check whether 978-93-82050-72-4 is a valid ISBN number.
(c) Check whether or not $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ is a Galois extension of \mathbf{Q}. Is it a Galois extension of $\mathbf{Q}(\sqrt{3})$? Give reasons for your answer.
4. (a) Find all positive integers x in [1, 200] such that $\mathrm{x} \equiv 2(\bmod 3), \mathrm{x} \equiv 1(\bmod 5)$, $\mathrm{x} \equiv 3(\bmod 7)$.
(b) Decompose $\mathbf{M}_{2}(\mathbf{C})$ into orbits under the action of left multiplication by $\mathrm{GL}_{2}(\mathbf{C})$. Find the stabiliser of $\left[\begin{array}{ll}1 & i \\ 0 & 2\end{array}\right]$ under this action.
5. (a) Find the elementary divisors and invariant factors of the group $\mathbf{Z}_{6} \times \mathbf{Z}_{15} \times \mathbf{Z}_{21}$.
(b) Check whether or not $\mathbf{Z}[\sqrt{-3}]$ is a UFD.
(c) How many Sylow 3 -subgroups does an abelian group of order 210 have ? Give reasons for your answer.
6. (a) Prove that if G is a group, then there is a free group F such that $G \simeq \frac{F}{H}$, for some $\mathrm{H} \Delta \mathrm{F}$.
(b) Find $[\mathrm{K}: \mathbf{Q}]$, where $\mathrm{K}=\mathbf{Q}\left(5^{1 / 3}, 11^{1 / 5}\right)$ giving detailed reasons for your answer. Also check whether or not $\mathrm{x}^{5}-11$ is irreducible over $\mathbf{Q}\left(5^{1 / 3}\right)$.
