M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
February, 2021

MMT-002 : LINEAR ALGEBRA

Time : $1 \frac{1}{2}$ hours

Maximum Marks : 25
(Weightage : 70\%)

Note: Question no. 5 is compulsory. Answer any three questions from Questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Let $\mathcal{B}=\left\{u_{1}, u_{2}, u_{3}\right\}$ be an ordered basis of \mathbf{R}^{3} and let the matrix of a linear operator T on \mathbf{R}^{3} with respect to this basis be $[\mathrm{T}]_{\mathcal{B}}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.

Find the matrix of T with respect to the basis $\left\{u_{1}+u_{2}+u_{3}, u_{2}+u_{3}, u_{1}+u_{3}\right\}$.
(b) Obtain the QR-decomposition for the matrix $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$.
2. (a) Is $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$ diagonalisable ? If yes, find
an invertible matrix P so that $\mathrm{P}^{-1} \mathrm{AP}$ is a diagonal matrix. If A is not diagonalisable, find the Jordan canonical form of A.
(b) Obtain the singular values of the matrix

$$
\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
1 & -1
\end{array}\right] .
$$

3. (a) Obtain the Jordan canonical form for the
$\operatorname{matrix}\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
(b) Find the square root of $\mathrm{A}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right] . \quad 2 \frac{1}{2}$
4. (a) Find a least squares solution of $\mathrm{Ax}=\mathrm{y}$,

$$
\text { where } \mathrm{A}=\left[\begin{array}{rr}
2 & -2 \\
1 & 3 \\
1 & 1
\end{array}\right], \mathrm{y}=\left[\begin{array}{l}
8 \\
0 \\
1
\end{array}\right]
$$

(b) In a city, the monkey (M) and dog (D) populations are governed by the following equations :
$\mathrm{M}_{\mathrm{k}+1}=0.5 \mathrm{M}_{\mathrm{k}}+0.4 \mathrm{D}_{\mathrm{k}}$
$\mathrm{D}_{\mathrm{k}+1}=-0 \cdot 104 \mathrm{M}_{\mathrm{k}}+1 \cdot 1 \mathrm{D}_{\mathrm{k}}$
What is the ratio of the two populations in the long run?
5. Which of the following statements are True and which are not ? Give reasons for your answers in the form of a short proof or a counter-example.
(a) If A is a non-zero 2×3 matrix, then there is a 3×2 non-zero matrix B such that $\mathrm{AB}=0$.
(b) If A is an $\mathrm{n} \times \mathrm{n}$ nilpotent matrix, then the product of the eigenvalues of $\mathrm{I}_{\mathrm{n}}+\mathrm{A}$ is non-zero, where I_{n} is the $\mathrm{n} \times \mathrm{n}$ identity matrix.
(c) There is no normal matrix having one of the entries as 2 .
(d) If A is positive definite, then A^{-1} is positive definite.
(e) Every upper triangular matrix is diagonalisable.

