M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M. Sc. (MACS)
 Term-End Examination
 December, 2020
 MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time: 2 Hours
Maximum Marks : 50
Note: (i) Question No. 1 is compulsory.
(ii) Answer any four questions out of remaining Q. Nos. 2 to 7.
(iii) Use of scientific and non-programmable calculator is allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example. No marks will be awarded without justification :
(a) Initial value problem :

$$
\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

P. T. O.
is equivalent to the integral equation

$$
y(x)=\int_{x_{0}}^{x} f(t, y(t)) d t .
$$

(b) If L denotes Laplace transform, and if :

$$
\begin{aligned}
& \mathrm{L}\{f(t)\}=f(s) \\
& \text { and } \mathrm{G}(t)=\left\{\begin{array}{cc}
\mathrm{F}(t-a) & t>a \\
0 & t<a
\end{array}\right\} \\
& \text { then } \mathrm{L} \mathrm{G}(t)=e^{-a s} f(s) \text {. }
\end{aligned}
$$

(c) The partial differential equation:

$$
\frac{\partial^{2} u}{\partial x^{2}}+4 x \frac{\partial^{2} u}{\partial y \partial x}+\left(1-y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=0
$$

is parabolic inside the ellipse $4 x^{2}+y^{2}=1$.
(d) The interval of absolute stability of the Runge-Kutta method:

$$
\begin{aligned}
& y_{i+1}=y_{i}+\left(-k_{1}+2 k_{2}\right) \\
& k_{1}=h f\left(x_{i}, y_{i}\right), k_{2}=h f\left(x_{i}+\frac{h}{4}, y_{i}+\frac{1}{4} k_{1}\right) \\
& \text { is }-2<\lambda h<2 .
\end{aligned}
$$

(e) For Legendre polynomials:

$$
\sum_{h=0}^{\infty} \mathrm{P}_{n}(-x) h^{n}=\left(1-2 x h+h^{2}\right)^{-\frac{1}{2}}
$$

2. (a) Find the series solution about $x=0$ of the differential equation :

$$
a x(1+x) y^{\prime \prime}-6 y^{\prime}+2 y=0
$$

(b) If :

$$
f(x)=\left\{\begin{array}{cc}
0 & \text { for }-1<x<0 \\
x & \text { for } 0<x<1
\end{array}\right.
$$

show that:

$$
\begin{array}{r}
f(x)=\frac{1}{4} \mathrm{P}_{0}(x)+\frac{1}{2} \mathrm{P}_{1}(x)+\frac{5}{16} \\
\mathrm{P}_{2}(x)-\frac{3}{32} \mathrm{P}_{4}(x)+\ldots \ldots .
\end{array}
$$

where $\mathrm{P}_{n}(x)$ is a Legendre polynomial of degree n.

4
3. (a) Using the method of variation of parameters, determine the appropriate Green's function for the boundary value problem $\quad y^{\prime \prime}+y+f(x)=0, y^{\prime}(0)=0$ $y(2)=0$, and express the solution as a definite integral.
(b) Find the appropriate value of $y(0.4)$ for initial-value problem $y^{\prime}=x-y^{2}, y(0)=1$. using multi-step method $y_{i+1}=y_{i}+\frac{h}{2}\left(3 f_{i}-f_{i-1}\right)$ with step length $h=0.2$. Compute the starting value using Taylor's series method (second order) with same step-length.
4. (a) Using Laplace transform, solve the p.d.e. :

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, x>0, t>0
$$

subject to the conditions :

$$
\begin{gathered}
u(0, t)=10 \sin 2 t, \\
u(x, 0)=0, \\
u_{x}(x, 0)=0 \lim _{x \rightarrow \infty} u(x, t)=0
\end{gathered}
$$

(b) If $f^{\prime}\left(x_{k}\right)$ is approximated by :

$$
f^{\prime}\left(x_{k}\right)=a f\left(x_{k+1}\right)+b f^{\prime}\left(x_{k+1}\right),
$$

find the values of a and b. What is the order of approximation?
5. (a) Using the Crank Nicolson method, integrate upto one time level for the solution of the initial value problem :

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<1
$$

with

$$
\begin{aligned}
& u(x, 0)=\sin 2 \pi x \\
& u(0, t)=0=u(1, t)
\end{aligned}
$$

with $h=\frac{1}{3}$ and $\lambda=\frac{1}{6}$.
(b) Using the substitution $z=\sqrt{x}$, reduce the equation :

$$
x y^{\prime \prime}+y^{\prime}+\frac{y}{4}=0
$$

to Bessel's equation. Hence find its solution.
(c) If H_{n} is a Hermite polynomial of degree n, then show that:

$$
\mathrm{H}_{n}^{\prime \prime}=4 n(n-1) \mathrm{H}_{n-2}
$$

6. (a) Solve the initial-value problem :

$$
y^{\prime}=-2 x y^{2} \text { and } y(0)=1
$$

P. T. O.
with $h=0.2$ on the interval [0, 0.4] using the predictor-corrector method:

$$
\begin{aligned}
& \mathrm{P}: y_{i+1}=y_{i}+\frac{h}{2}\left(3 y_{i}^{\prime}-y_{i-1}^{\prime}\right) \\
& \mathrm{C}: y_{i+1}=y_{i}+\frac{h}{2}\left(y_{i+1}^{\prime}-y_{i}^{\prime}\right)
\end{aligned}
$$

Perform two corrector iterations per step. Use the exact solution $y(x)=\left(1+x^{2}\right)^{-1}$ to obtain the starting value. 4
(b) Using a second order finite difference method, solve the boundary value problem : 4

$$
\begin{gathered}
x^{2} y^{\prime \prime}=2 y-x \\
y(2)=0 \\
y(3)=0
\end{gathered}
$$

with $h=\frac{1}{3}$.
(c) Find:

$$
\mathrm{L}^{-1}\left\{\cot ^{-1} z\right\}
$$

7. (a) Using Laplace transform, solve the following initial value problem :

$$
y_{1}^{\prime \prime}=y_{1}+3 y_{2} ; y_{2}^{\prime \prime}=4 y_{1}-4 e^{t}
$$

with $y(0)=2, y_{1}^{\prime}(0)=3$,

$$
\begin{aligned}
& y_{2}(0)=1 \\
& y_{2}^{\prime}(0)=2
\end{aligned}
$$

(b) Consider a steel plate of size $15 \mathrm{~cm} \times 15 \mathrm{~cm}$. If two of its parallel sides are held at $100^{\circ} \mathrm{C}$ and the other two parallel sides are held at $0^{\circ} \mathrm{C}$, determine the steady state temperature at interior points assuming a grid size of $5 \mathrm{~cm} \times 5 \mathrm{~cm}$. Use fire-point formula.

