No. of Printed Pages : 3

MMT-005

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M. Sc. (MASC)

Term-End Examination

December, 2020

MMT-005 : COMPLEX ANALYSIS

Time : $1\frac{1}{2}$ *Hours*

Maximum Marks : 25

Note: (i) Question No. 1 is compulsory.

(ii) Attempt any three questions from Question No. 2 to 5.

(iii) Use of calculator is not allowed.

1. State, giving reasons whether the following
statements are True or False : $5 \times 2=10$

(a) $f(z) = \operatorname{Re} z$ is analytic everywhere.

P. T. O.

- (b) There is no Mobius transformation with three or more fixed points.
- (c) $\int \frac{dz}{(z-2)^n} \neq 0$ for all $n \ge 2$ along the circle |z-2| = r.
- (d) z = 0 is a pole of $e^{1/z}$.
- (e) $\left| \int_{C} e^{z} dz \right| \leq 2 \pi e$, where C is the unit circle.
- 2. (a) Find the Laurent series expansion of the function $f(z) = \frac{z}{(z-1)^3(z+3)}$ valid for |z-1| < 4.

(b) Find the residue of $f(z) = \frac{\sin z}{z^{2n+1}}$ at z = 0.

3. (a) Find the analytic function :

$$f(z) = u(x, y) + iv(x, y)$$

if $u(x, y) = e^x \sin y$. Is *u* harmonic ? 3

(b) Find a conformal map from open half plane $\pi := \{z : \text{Im } z > 0\}$ onto the open unit disc |z| < 1. 2

- 4. (a) Find all the roots of the equation $\sinh z = i$. 3
 - (b) Find the maximum and minimum moduli of $(z^2 z)$ in the disc $|z| \le 1$. 2
- 5. Evaluate $\int_0^\infty \frac{\sin x}{x} dx$ using contour integration. 5

MMT-005