M. Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER

SCIENCE) M. Sc. (MACS)

Term-End Examination

December, 2020

MMT-001 : PROGRAMMING AND DATA

STRUCTURES

Time : $1 \frac{1}{2}$ Hours
Maximum Marks : 25

Weightage : 20\%

Note: Question No. 5 is compulsory. Answer any three questions from Q. No. 1 to 4. All programs should be written in ' C ' language.

Use of calculator is not permitted.
P. T. O.

1. (a) Write the preorder and postorder traversals of the following binary tree : 2

(b) What is a Macro ? How is it different from function ? Discuss both with a suitable example for each.
2. (a) Expalin fprintf() and fscanf() functions, with an example.
(b) Write a program that determines whether a given year is a leap year or not.
3. (a) What is Priority Queue ? Give one advantage of it.
(b) Illustrate the malloc() and calloc() functions in ' C ' language
4. (a) Explain "call by value" and "call by reference" with the help of an example for each.
(b) Write a program for multiplication of two matrices and trace the program with sample input.
5. Find the output of the following. Justify your answer :

2 each
(a) \#include<stdio.h> int main()
\{
char i, j;
for ($\mathrm{i}=65, \mathrm{i}<=70 ; \mathrm{i}++$)
\{ printf ("/n")
for ($\mathrm{j}=65 ; \mathrm{j}<=70 ; \mathrm{j}++$)
$\{\operatorname{printf}(" \% \mathrm{C} ", \mathrm{j})$;\}
\}
return 0;
\}
(b) main()
\{ increment(); increment(); increment();
\}
increment()
\{ static int $\mathrm{i}=1$; printf ("\%d /n", i); $\mathrm{i}=\mathrm{i}+1$;
\}
P. T. O.
(c) main()
\{ increment(); increment(); increment();\}
increment()
$\{$ int $\mathrm{i}=1 ; \operatorname{printf}(" \% \mathrm{~d} / \mathrm{n} ", \mathrm{i}) ; \mathrm{i}=\mathrm{i}+1 ;\}$
(d) main()
\{if (printf("HELLO"))
\}
\}
(e) main()
\{ int i; int marks[]=\{55, 65, 75, 56, 78, 78, 90\}; for ($\mathrm{i}=0, \mathrm{i}<6 ; \mathrm{i}++$) $\operatorname{disp}(\&$ marks [i]); \} $\operatorname{disp}(i n t * n)$ $\left\{\operatorname{printf}\left({ }^{*} \% \mathrm{~d} / \mathrm{n} ",{ }^{*} \mathrm{n}\right) ;\right\}$

