No. of Printed Pages : 2

MCH-003

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

December, 2019

MCH-003 : SPECTROSCOPIC METHODS

Time : 3 hours	Maximum Marks : 75

Note: (i) Attempt any five questions. (ii) All questions carry equal marks.

Answer any five of the following :

3x5=15

- 1. (a) In what respects electromagnetic radiation is different from sound waves ?
 - (b) Give a schematic diagram for the energy levels for a molecule.
 - (c) Illustrate different molecular vibrations for a CO₂ molecule.
 - (d) Differentiate between Phosphorescence and Fluorescence with reference to its applications.
 - (e) FT-NMR is better than CW- NMR. Explain.
 - (f) What are isotopic peaks? In what way are these useful?
- 2. (a) Molecular absorption spectra are band spectra where as Atomic absorption spectra 5 are line spectra. Explain.
 - (b) Define Beer-Lambert's Law. The molar absorptivity of a substance is 5 2.0×10⁴ cm⁻¹mol⁻¹dm³. Calculate the transmittance through a cuvette of path length 5.0 cm containing 2.0×10⁻⁶ mol dm⁻³ solution of the substance.

(c) Explain the principle of FTIR and give any two of its advantages.

- 3. (a) Explain the phenomenon of phosphorescence and fluorescence with the help of 5 Jablonski diagram.
 - (b) How photoluminiscence is related to structure ? Explain why pyridine is 5 nonfluorescent but isoquinoline is fluorescent.
 - (c) Discuss the application of fluorimetry for the analysis of gaseous pollutants. 5

MCH-003

1

5

4.	(a)	Differentiate between atomic emission, atomic absorption and atomic fluorescence spectroscopy by giving a schematic diagram for each	5
	(b)	Draw the structure of flame showing various zones and explain important reactions when an analyte is put into it.	5
	(c)	Explain the methodologies of quantitative analysis by flame photometry.	5
5.	(a) (b)	Explain the different types of chemical interferences observed in flame photometry. Discuss the analytical methodology for quantitative analysis using ICP-AES. What special advantages ICP-AES offers in the analysis of various materials ?	5 5
	(c)	What is fluorescence quenching method of analytical determination of the analyte ? How is this method used for the analysis of fluoride from aquatic environment ?	5
6.	(a)	List different types of atomic fluorescence transitions. Explain stokes direct line fluorescence giving a schematic diagram showing the transitions involved.	5
	(b)	Draw a schematic diagram of Hollow Cathode Lamp (HCL) illustrating different components. In what respects HCL differs from Electrodeless Discharge Lamp (EDL) ?	5
	(c)	What are the essential components of a typical Atomic Absorption Spectrophotometer (AAS) ? Draw a schematic diagram of AAS.	5
7.	(a)	Explain the basic principle of flameless AAS and draw a schematic diagram of graphite furnace. How background absorption is handled in GFAAS ?	5
	(b)	Explain the role of organic solvents in AAS. What are the advantages of such solvents (list any two) over acidic-aqueous solvents ?	5
	(c)	Draw a schematic layout of different components of an ICP-AES spectrometer. Explain two steps of sample introduction briefly.	5
8.	(a)	What is meant by anisotropy of a chemical bond ? Explain with the help of an example.	5
	(b)	Explain Mc-Lafferty rearrangement taking the example of 2-Pentanone.	5
	(c)	The main spectral details of an organic molecule having molecular formula, $C_3H_6O_2$ are as follows : Mass : (M/Z 29, 45, 57 and 74 (M ⁺))	5
		$IR : (1700 \text{ cm}^{-1} \text{ (strong)}; 3000 \text{ cm}^{-1} \text{ (broad)})$	
		NMR: $(\delta = 1.2(t), \delta = 2.4(q), \delta = 11.7(1H))$	
		Determine the structure of the molecule.	

MCH-003