No. of Printed Pages: 14

MTE-04_MTE-05

BACHELOR'S DEGREE PROGRAMME

Term-End Examination, 2019

MATHEMATICS

MTE-04: ELEMENTARY ALGEBRA

Time: 11/2 Hours

|Maximum Marks: 25

[Weightage: 70%]

Instructions:

MTE-04: ELEMENTARY ALGEBRA

&

MTE-05: ANALYTICAL GEOMETRY

- Students registered for both MTE-04 & MTE -05 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer books.
- Students who have registered for MTE-04 or MTE-05 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.

Note: Question no. 4 is **compulsory**. Answer **any three** from the rest of the questions. Use of calculators in **not** allowed.

$$A \cap B = A \setminus (A \setminus B)$$

(b) Prove that
$$2^n > 1 + n\sqrt{2^{n-1}}$$
 $\forall n > 2$, using the AM-GM inequality. [2½]

$$3x + y - 5z = 28$$
$$x + 2y - z = 14$$
$$5y = 25$$

- (a) Find the polynomial equation over R of lowest degree which is satisfied by (1-i) and (3+2i) [2]
 - (b) A company with three retail stores has 10 TVs,15 stereos and 12 recorders in the first store; 20

TVs, 14 stereos and 5 recorders in the second store; and 25 TVs, 15 stereos and 7 recorders in the third store. Show this inventory in matrix form.

[2]

- (c) Give an example of a real-life situation of an empty set, with justification. [1]
- 4. Which of the following statements are true and which are false? Give a short proof or counter example to justify your answer: [10]
 - (i) For any two sets A and B, if $A \subseteq B$, then $A \cup B = B$.
 - (ii) Every polynomial in $\mathbb{R}[x]$ has all its roots in \mathbb{R}
 - (iii) The converse of the statement 'Every real number is a complex number' is 'Every real number is NOT a complex number'.
 - (iv) Arg $\left(\frac{\Pi}{4}\right) = \frac{\Pi}{4}$.
 - (v) If $a \in \mathbb{R}$, det $([a]) \ge 0$.

- 5. (a) Find the roots of $3x^3 + 7x^2 7x 3$, using the fact that they are in GP. [3]
 - (b) Consider the equation E = 3x 7y + 1 = 0. Write down two other linear equations E_1 and E_2 such that:
 - (i) E and E_1 are inconsistent;
 - (ii) E and E_2 have infinitely many solutions.

---- X -----

एम.टी.ई.-04/एम.टी.ई.-05

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा, 2019

गणित

एम.टी.ई.-04: प्रारंभिक बीजगणित

समय : 1½ घण्टे

अधिकतम अंक :

(कुल का : 70%)

निर्देश ः

एम.टी.ई.-04 : प्रारंभिक बीजगणित

एवं

एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

- जो छात्र एम.टी.ई.- 04 और एम.टी.ई.- 05 दोनों पाठ्यक्रमों के लिये पंजीकृत हैं, दोनों प्रश्न-पत्रों के उत्तर अलग-अलग उत्तर-पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।
- 2 जो छात्र एम.टी.ई.- 04 या एम.टी.ई.- 05 किसी एक के लिये पंजीकृत हैं, अपने उसी प्रश्नपत्र के उत्तर उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।

नोट : प्रश्न संख्या 4 करना जरूरी है। शेष प्रश्नों में से कोई तीन प्रश्नों के उत्तर दीजिए। कैलकुलेटर के प्रयोग की अनुमित नहीं है।

(क) मान लीजिए कि A और B समुच्चय X के उपसमुच्चय हैं।
 सिद्ध कीजिए कि : [2½]

$$A \cap B = A \setminus (A \setminus B)$$

(ख) AM-GM असमिका का उपयोग करते हुए, सिद्ध कीजिए कि :

$$2^n > 1 + n\sqrt{2^{n-1}} \quad \forall \quad n > 2$$
. [2½]

2. (क) क्या समीकरणों के निम्नलिखित निकाय को क्रेमर-नियम द्वारा हल किया जा सकता है ? यदि हाँ, तो इसे इस नियम द्वारा हल कीजिए। अन्यथा, इसे गाउसीय निराकरण विधि के अनुप्रयोग से हल कीजिए : [3]

$$3x + y - 5z = 28$$
$$x + 2y - z = 14$$
$$5y = 25$$

[2]

- 3. (क) (1-i) और (3+2i) से संतुष्ट होने वाला, R पर न्यूनतम घात का बहुपद समीकरण ज्ञात कीजिए। [2]
 - (ख) तीन फुटकर स्टोरों वाली एक कंपनी के पहले स्टोर में 10 टी.वी, 15 स्टिरियो और 12 रिकोर्डर हैं; दूसरे स्टोर में 20 टी.वी., 14 स्टिरियो और 5 रिकोर्डर है तथा तीसरे स्टोर में 25 टी.वी., 15 स्टिरियो और 7 रिकोर्डर हैं। इस सूचना को एक आव्यूह के रूप में दर्शाइए। [2]
 - (ग) पुष्टि करते हुए, दैनिक जीवन की स्थिति से, रिक्त समुच्चय का एक उदाहरण दीजिए। [1]
- 4. (क) निम्निलिखित में से कौन-से कथन सत्य हैं तथा कौन-से कथन असत्य हैं ? अपने उत्तर की पुष्टि के लिए, एक संक्षिप्त उपपत्ति या एक प्रतिउदाहरण दीजिए : [10]
 - (i) किन्हीं दो समुच्चयों A और B के लिए, यदि $A\subseteq B$ है, तो $A\cup B=B$ होगा।
 - (ii) $\mathbf{R}[x]$ में प्रत्येक बहुपद के सभी मूल \mathbf{R} में होते हैं।
 - (iii) कथन 'प्रत्येक वास्तविक संख्या एक सम्मिश्र संख्या होती है' का विलोम 'प्रत्येक वास्तविक संख्या एक सम्मिश्र संख्या नहीं होती है' है।

(iv) Arg
$$\left(\frac{\Pi}{4}\right) = \frac{\Pi}{4}$$
.

- (v) यदि $a \in \mathbb{R}$, तो det $([a]) \ge 0$.
- 5. (क) $3x^3 + 7x^2 7x 3$ के मूल इस तथ्य का उपयोग करते हुए ज्ञात कीजिए कि वे GP में हैं। [3]
 - (ख) समीकरण $E \equiv 3x 7y + 1 = 0$ पर विचार कीजिए। दो ऐसे अन्य रैखिक समीकरण E_1 और E_2 लिखिए कि : [2]
 - (i) E और E_1 असंगत हों।
 - (ii) E और E_2 के अनंततः अनेक हल हों।

BACHELOR'S DEGREE PROGRAMME

Term-End Examination, 2019

MATHEMATICS

MTE-05: ANALYTICAL GEOMETRY

Time: 11/2 Hours

[Maximum Marks: 25

|Weightage: 70%

Note: Question no. 5 is compulsory. Answer any three from the rest of the questions. Use of calculators in not allowed.

- 1. (a) Find the value of \underline{a} so that the line $\frac{x}{a} = y = \frac{z-1}{2}$ lies in the plane 2x+3y+z=1 [2]
 - (b) Find the foci, eccentricity, directrix and the asymptotes of the conic $3x^2 4y^2 = 5$. [3]
- 2. (a) Find the equation of the circle $(x-1)^2 + y^2 = 1$ when the axes are rotated by 45°. [2]

- (b) Find the equation of the sphere passing through the points (1,1,0), (0,0,1), (1,0,-1) and (1,1,1).[3]
- 3. (a) Check whether the cones $\frac{x^2}{2} + \frac{y^2}{3} + \frac{z^2}{4} = 0$ and $2x^2 + 3y^2 + 4z^2 = 0$ are reciprocal or not. [3]
 - (b) Find the section of the conicoid $y^2 + 2z^2 = x$ by the plane x + y = 1 What object does it represent? [2]
- 4. (a) Find the direction cosines of the line which is perpendicular to both the lines with direction cosines $\frac{1}{\sqrt{6}}$, $\frac{2}{\sqrt{6}}$, $\frac{1}{\sqrt{6}}$ and $\frac{2}{\sqrt{21}}$, $\frac{1}{\sqrt{21}}$, $\frac{-4}{\sqrt{21}}$. [2]
 - (b) Identify the type of the conicoid $2x^2 + y^2 z^2 8x 2y 2z + 7 = 0$ Give a rough sketch of it. [3]
 - 5. Which of the following statements are true and which ones are false? Give reasons for your answers:

 [5×2=10]
 - (a) The tangents at the points (a,2a) and (a,-2a)

on the parabola $y^2 = 4ax$ are perpendicular to each other.

- (b) The equation $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0, abc \neq 0$, always represents a central conicoid.
- (c) The equation $x^2 + y^2 = 1$ represents a cylinder in three dimensional space.
- (d) If a curve is symmetrical about the origin, it is symmetrical about the x-axis.
- (e) The equation $4x^2 + 9y^2 + 12xy 8x 12y + 4 = 0$ represents a pair of coincident lines.

---- Y

एम.टी.ई.-04/एम.टी.ई.-05

स्नातक उपाधि कार्यक्रम सत्रांत परीक्षा, 2019

गणित

एम.टी.ई.-05: वैश्लेषिक ज्यामिति

सम्ब : 1½ घण्टे

अधिकतम अंक : 25

(कुल का : 70%)

भोट : प्रश्न संख्या 5 करना अनिवार्य है। शेष प्रश्नों में से किन्हीं तीन प्रश्नों के उत्तर दीजिए। कैलकुलेटर के प्रयोग की अनुमित नहीं है।

- 1 (क) $\frac{a}{a}$ का ऐसा मान ज्ञात कीजिए जिसके लिए रेखा $\frac{x}{a} = y = \frac{z-1}{2}$ समतल 2x + 3y + z = 1 में स्थित है।[2]
 - (ख) शांकव $3x^2-4y^2=5$ की नाभियाँ, उत्केंद्रता, नियता और अनंतस्पर्शी ज्ञात कीजिए। [3]
- (क) वृत्त $(x-1)^2 + y^2 = 1$ का समीकरण ज्ञात कीजिए, जब अक्षों को 45° से घुमाया गया हो । [2]

- (ख) बिन्दुओं (1,1,0), (0,0,1), (1,0,-1) और (1,1,1) से गुजरने वाले गोले का समीकरण ज्ञात कीजिए। [3]
- 3. (क) जाँच कीजिए कि शंकु $\frac{x^2}{2} + \frac{y^2}{3} + \frac{z^2}{4} = 0$ और $2x^2 + 3y^2 + 4z^2 = 0$ व्युक्तम शंकु है या नहीं। [3]
 - (ख) समतल x+y=1 द्वारा शांकवज $y^2+2z^2=x^{\frac{n}{2}}$ परिच्छेद ज्ञात कीजिए। यह किस वस्तु को निरूपित करता है ?
- 4. (क) दिक्कोज्याएँ $\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}$ और $\frac{2}{\sqrt{21}}, \frac{1}{\sqrt{21}}, \frac{4}{\sqrt{21}}$ वाली रेखाओं के लंबरेखा की दिक्कोज्याएँ ज्ञात **कीजि**ए।
 - (ख) शांकवज $2x^2 + y^2 z^2 8x 2y 2z + 7 = 0$ प्रकार पता लगाइए। इसका स्थूल आलेख भी दीजिए। [3]
- 5. बताइए निम्नलिखित में से कौन-से कथन सत्य हैं और कौन व असत्य। अपने उत्तरों के कारण दीजिए :
 - (क) परवलय $y^2 = 4ax$ पर बिंदुओं (a,2a) और (a,-2a) पर स्पर्शरेखाएँ परस्पर लंब हैं।

- (ख) समीकरण $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$, $abc \neq 0$ हमेशा संकेन्द्रीय शांकवज को निरूपित करता है।
- (ग) समीकरण $x^2 + y^2 = 1$ त्रिविम समष्टि में बेलन को निरूपित करता है।
- (μ) यदि वक्र मूल बिन्दु के सापेक्ष समिमतीय है, तब यह μ अक्ष के सापेक्ष भी समिमतीय होता है।
- (ङ) समीकरण $4x^2 + 9y^2 + 12xy 8x 12y + 4 = 0$ प्रतिच्छेदी रेखाओं के युग्म को निरूपित करता है।