### No. of Printed Pages: 10

CHE-10

## **BACHELOR OF SCIENCE (B.Sc.)**

### Term-End Examination, 2019

#### **CHEMISTRY**

CHE-10: SPECTROSCOPY

Time: 2 Hours]

[Maximum Marks: 50

Note: Answer Any Five questions. All questions carry equal marks. Use of log tables and non-programmable calculator is allowed.

 $\underline{h} = 6.626 \times 10^{-34} \text{ Js}, \underline{c} = 2.998 \times 10^8 \text{ ms}^{-1}, e = 1.6 \times 10^{-19} \text{ C}$ 

- (a) Find the term symbols for the ground state and
   1s12p1 (triplet) excited state of helium. [4]
  - (b) What is the necessary condition for a molecule to: [3]
    - (i) exhibit rotational spectrum
    - (ii) exhibit vibrational spectrum
    - (iii) be optically active?

- (c) What do you understand by <u>n</u>-fold axis of symmetry? Explain by giving two examples. [3]
- 2. (a) Show that for a diatomic molecule

$$\underline{\mathbf{r}}_1 = \frac{\underline{\mathbf{m}}_2}{(\mathbf{m}_1 + \mathbf{m}_2)} \underline{\mathbf{r}}$$

- where  $\underline{r}_1$  and  $\underline{r}_2$  are the distances of atoms 1 and 2 from the centre of mass,  $\underline{r}$  is the bond length,  $\underline{m}_1$  and  $\underline{m}_2$  are their masses. [2]
- (b) If the fundamental vibrational transition for O H species is observed at 3735 cm<sup>-1</sup> find out the position of the corresponding transition of O D species. Given that  $\underline{m}_0 = 15.99 \times 10^{-3} \text{ kg}$ ,  $\underline{m}_H = 1.0078 \times 10^{-3} \text{ kg}$   $\underline{m}_D = 2.014 \times 10^{-3} \text{ kg}$ . [3]
- (c) Draw and explain various normal modes of vibration of H<sub>2</sub>O. [3]
- (d) Give the difference between the fundamental transition and overtones. [2]
- 3. (a) The transition from  $\underline{J} = 0$  to  $\underline{J'} = 1$  for AB takes place at  $\underline{\bar{z}} = 22$  cm<sup>-1</sup>. Calculate the bond length of AB Atomic masses of A and B are  $1.008 \times 10^{-3}$

The IR and Raman spectral data of N₂O are given (b) [3] below. Deduce its structure:

|   |                    |                   | · · · · · · · · · · · · · · · · · · · |
|---|--------------------|-------------------|---------------------------------------|
| i | v/cm <sub>-1</sub> | IR .              | Raman                                 |
|   |                    | Strong; PQR band  | <b>-</b>                              |
|   | 1285               | V.strong; PR band | V.strong                              |
|   |                    | V.strong; PR band | Strong                                |

Arrange the following in order of increasing (c) carbonyl group frequency. Give reason for your [3]

Define the following terms: (a)

answer:

[2]

[P.T.O.]

- Chromophore (i)
- Bathochromic shift (ii)
- In the UV absorption spectrum of oxygen (b) continuum absorption begins at 56876 cm<sup>-1</sup>. The excitation energy of oxygen atom is 15868 cm<sup>-1</sup>.

Find the dissociation energy of O<sub>2</sub> molecule in the ground state in kcal mol-1.

(c) A compound having molecular formula C<sub>5</sub>H<sub>8</sub>O<sub>3</sub> shows the following spectral data: [5]

UV spectrum (λmax) : 262 nm

IR spectrum : 3333 - 2300, 1715 cm<sup>-1</sup>

<sup>1</sup>H - NMR spectrum (δ, COCl<sub>3</sub>): 11.0 (<u>s</u>,1H), 2.12 (<u>s</u>, 3H), 2.60 (<u>s</u>, 4H), Mass spectrum (<u>m</u>/<u>z</u>): 116, 43

Deduce the structure of this compound on the basis of the above spectral data.

- (a) Explain the process of predissociation using potential energy curves. [4]
- (b) Draw a block diagram of a spectrometer and explain the role of various components in it. [3]
- (c) (i) Why are esr spectra recorded as derivatives curves?
  - (ii) Which of the following would show an esr spectrum:

CO<sub>2</sub>, NO<sub>2</sub>, NO, N<sub>2</sub>

[3]

| <b>6</b> . | (a) Predict the signals in the <sup>1</sup> H-NMR spec |                                                   | for the |
|------------|--------------------------------------------------------|---------------------------------------------------|---------|
|            |                                                        | isomers of butyl chloride, assuming coupling only |         |
|            | •                                                      | between protons on adjacent carbons.              | [4]     |

- (b) The chemical shift of protons in a test sample occurs at 2 ppm. What will be the difference in Hz between TMS and test proton resonances when measured in a 100 MHz spectrometer and in a 200 MHz spectrometer? [3]
- (c) Explain the term "band pass width" with the help of a suitable diagram. [3]
- 7. (a) Draw and discuss the mass spectrum of bromomethane with respect to the origin of lines and their intensities. [3]
  - (b) Draw and explain the ESR spectrum of ethyl radical. [3]
  - (c) What are the selection rules for transitions of a vibrating rotator? [2]
  - (d) State mutual exclusion principle. [2]

# विज्ञान स्नातक (बी.एस.सी.)

सत्रांत परीक्षा, 2019

# रसायन विज्ञान सी.एच.ई.-10 : स्पेक्ट्रमिकी

समय : 2 घण्टे

अधिकतम अंक : 50

नोट : किन्हीं पाँच प्रश्नों के उत्तर दीजिए। सभी प्रश्नों के अंक समान है। लॉग सारिणयों तथा अप्रोग्रामीय वैज्ञानिक कैलकुलेटरों के प्रयोग की अनुमति है।

 $\underline{h} = 6.626 \times 10^{-34} \text{ Js}, \ \underline{c} = 2.998 \times 10^8 \text{ ms}^{-1}, \ e = 1.6 \times 10^{-19} \text{ C}$ 

- (क) हीलियम की मूल अवस्था और 1s12p1 (त्रिक) उत्तेजित अवस्था के लिए पद-प्रतीक ज्ञात कीजिए।
   [4]
  - (ख) किसी अणु के लिए निम्नलिखित के लिए क्या आवश्यक शर्त होती है: [3]
    - (i) घूर्णन स्पेक्ट्रम दर्शाने के लिए
    - (ii) कम्पनिक स्पेक्ट्रम दर्शाने के लिए
    - (iii) ध्रुवण घूर्णक होने के लिए

[2]

[4]

2.

(ख)

$$\underline{\mathbf{r}}_1 = \frac{\underline{\mathbf{m}}_2}{(\mathbf{m}_1 + \mathbf{m}_2)}\underline{\mathbf{r}}$$

जहाँ 📭 और 📭 क्रमशः परमाणुओं 1 और 2 की द्रव्यमान के केन्द्र से दूरियाँ हैं, r आबंध लंबाई है और m, और m<sub>2</sub> क्रमशः परमाणुओं 1 और 2 के द्रव्यमान हैं।

यदि O-H स्पीशीज़ के लिए मूल कम्पन संक्रमण 3735 cm-1 प्रेक्षित होता हो, तो O-D स्पीशीज़ के लिए संगत संक्रमण की स्थिति ज्ञात कीजिए। यह दिया गया है कि : [3]

$$\underline{m}_0 = 15.99 \times 10^3 \text{ kg}, \ \underline{m}_H = 1.0078 \times 10^3 \text{ kg}$$
 $\underline{m}_D = 2.014 \times 10^3 \text{ kg}.$ 

(ग)  $H_2O$  के लिए विभिन्न सामान्य कम्पन विधाओं को आरेखित

कीजिए और उनकी व्याख्या कीजिए। [3] (ঘ) मूल संक्रमण और अधिस्वरकों में अंतर बताइए। [2]

किसी अणु AB के लिए <u>J</u> = 0 से <u>J</u>' = 1 वाला संक्रमण (क) 3. 👱 = 22 cm 1 पर प्राप्त होता है। AB की आबंध लंबाई परिकलित कीजिए। A और B के परमाणु द्रव्यमान क्रमशः

1.008 x 10<sup>-3</sup> kg और 35.45 x 10<sup>-3</sup> kg हैं।

(ख) N<sub>2</sub>O के लिए अवरक्त और रमन स्पेक्ट्रमी आंकड़े नीचे दिए गए हैं। इसकी संरचना निर्धारित कीजिए : [3]

| <u>v</u> / cm <sup>-1</sup> | अवरक्त            | रमन      |
|-----------------------------|-------------------|----------|
| 589                         | प्रबल, PQR बैंड   | -        |
| 1285                        | अतिप्रबल, PR बैंड | अतिप्रबल |
| 2224                        | अतिप्रबल, PR बैंड | प्रबल    |

(ग) निम्नलिखित को उनकी कार्बोनिल आवृत्ति के बढ़ते क्रम में व्यवस्थित कीजिए। अपने उत्तर के लिए कारण बताइए: [3]

4. (क) निम्नलिखित पदों की परिभाषा कीजिए :

(i) वर्णमूलक (ii) वर्णोत्कर्षी सृति

[2]

(ख) ऑक्सीजन के पराबैंगनी अवशोषण स्पेक्ट्रम में, सांतत्यक अवशोषण 56878 cm<sup>-1</sup> पर आरंभ होता है। ऑक्सीजन परमाणु की उत्तेजन ऊर्जा 15868 cm<sup>-1</sup> है। ऑक्सीजन की मूल अवस्था में, kcal mol<sup>-1</sup> मात्रकों में, वियोजन ऊर्जा

[5]

(ग) एक यौगिक जिसका अणु सूत्र C,H,O, है, निम्नलिखित स्पेक्ट्रमी आंकड़ें प्रदर्शित करता है :

पराबैंगनी स्पेक्ट्रम (<u>\lambda</u>max) : 262 nm,

अवरक्त स्पेक्ट्रम : 3333 - 2300, 1715 cm<sup>-1</sup>

¹H- एन.एम.आर. स्पेक्ट्रम (δ, COCI₃): 11.0 **(**एकक, 1H), 2.12 (एकक, 3H), 2.60 (एकक, 4H), द्रव्यमान स्पेक्ट्रम (m/z): 116, 43

उपरोक्त स्पेक्ट्रमी आंकड़ों के आधार पर यौगिक की संरचना ज्ञात कीजिए।

(क) स्थितिज ऊर्जा वक्रों के उपयोग द्वारा पूर्व-वियोजन प्रक्रिया 5. की व्याख्या कीजिए। [4] किसी स्पेक्ट्रममापी का खंड-आरेख बनाइए और उसके (ख)

> विभिन्न घटकों के कार्य की व्याख्या कीजिए। [3] (ग) इ.एस.आर. स्पेक्ट्रमों को व्युत्पन्न वक्रों के रूप में (i) अभिलेखित क्यों किया जाता है?

[3] निम्नलिखित में से कौन-से इ.एस.आर. स्पेक्ट्रम (ii) दशर्ऐिंग :

CO, NO, NO, N

CHE-10/3500

| 6. | (क) | यह मानते हुए कि युग्मन केवल संलग्न कार्बन परमा<br>पर उपस्थित प्रोटॉनों के मध्य होता है, ब्यूटिल क्लो<br>के समावयवों के एन.एम.आर. स्पेक्ट्रमों में प्रदर्शित स्<br>का अनुमान लगाइए।                                    | राइड         |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | (অ) | किसी परीक्षण प्रतिदर्श में प्रोटॉनों की रासायनिक सृ<br>ppm पर प्राप्त होती है। यदि 100 MHz और 200<br>स्पेक्ट्रममापियों का मापन के लिए उपयोग किया जा<br>टी.एम.एस. और परीक्षण प्रोटॉन के अनुनादों में जि<br>अंतर होगा ? | MHz<br>ए तो  |
|    | (ग) | उचित चित्र की सहायता से बैंड पारण चौड़ाई प<br>व्याख्या कीजिए।                                                                                                                                                         | द की<br>[3]  |
| 7. | (ক) | ब्रोमोमेथेन के द्रव्यमान स्पेक्ट्रम को आरेखित कीजिए<br>रेखाओं की उत्पत्ति और उनकी तीव्रताओं के सं<br>स्पेक्ट्रम की चर्चा कीजिए।                                                                                       |              |
|    | (ख) | एथिल मूलक का इ.एस.आर. स्पेक्ट्रम आरेखित<br>और उसकी चर्चा कीजिए।                                                                                                                                                       | कीजिए<br>[3] |
|    | (ग) | किसी कम्पमान घूर्णक के संक्रमणों के लिए क्या<br>नियम होते हैं ?                                                                                                                                                       | वरण<br>[2]   |
|    | (ঘ) | परस्पर अपवर्जन सिद्धांत लिखिए।                                                                                                                                                                                        | [2]          |

---- X ----

10/2500 ( 10 )