MCA (Revised)

Term-End Examination, 2019

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 Hours
Maximum Marks : 100

Note : Question No. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) If 0.333 is the approximate value of (1/3), find absolute, relative and percentage error.
(b) Determine the number of iterations required, to obtain the smallest positive root of $x^{3}-2 x-5=0$. correct upto two decimal places, when Bisection method is used.
(c) Solve the following system of equations using Gauss Elimination method :

(d) Write probability distribution formula for Binomial distribution and Poisson distribution.
(e) Determine the value of $f(x)$ at $x=4$, using Lagrange Interpolation formula on the data given below: [5]

x	1.5	3	6
$\mathrm{f}(\mathrm{x})$	2.5	2	20

(f) Calculate the value of $\int_{0}^{0.6} e^{x} d x$, correct to five significant figures; by using Simpson's (1/3) rule. (Take $n=6$).
(g) If a bank receives on an average $\lambda=6$ bad cheques per day. What is the probability that it will receive 4 bad cheques on any given day?
(h) Following data is given for marks in subject A and B of certain examination :

	Subject A	Subject B
Mean Marks	36	85
Standard Deviation	11	8

Given, the coefficient of correlation between A and $B= \pm 0.66$.
(i) Determine the two equations of regression.
(ii) Calculate the expected marks in A, corresponding to 75 marks obtained in B .
(i) For $x=0.5555 E 1 ; \quad y=0.4545 E 1$ and $z=0.4535 E 1$, prove that $x(y-z) \neq x y-x z$.
2. (a) - Solve the Quadratic equation $4 x^{2}+8 x-21=0$ using two decimal digit arithmetic with rounding, using any two of the following methods : [10]
(i) Bisection method
(ii) Secant method
(iii) Regula Falsi method
(b) Solve the initial value problem $u^{\prime}=-2 t u^{2}$, with $u(0)=1, h=0.2$ on the interval $[0,1]$. Use the fourth order classical Runge-Kutta method. [10]
3. (a) Obtain the positive root of the equation $\mathrm{x}^{2}-1=0$ by Newton-Raphson method, correct to two decimal places.
(b) Solve the following system using LU decomposition method :

$$
\begin{aligned}
& 6 x_{1}-2 x_{2}=14 \\
& 9 x_{1}-x_{2}+x_{3}=21 \\
& 3 x_{1}+7 x_{2}+5 x_{3}=9
\end{aligned}
$$

(c) Determine the lowest degree polynomial, which satisfies the following set of values, using forward difference. Also find the polynomial :

x	0	1	2	3	4	5	6	7
$f(x)$	0	7	26	63	124	215	342	511

4. (a) Calculate the value of the Integral $\int_{4}^{5.2} \log x d x$ by using Simpson's (1/3) rule and Simpson's (3/8) rule.
(b) Compute the value of R and R^{2} for the data given below, where $R=S_{y y} / \sqrt{S_{x x} S_{y y}}$.

Sample Size (i)	12	21	15	1	24
x_{i}	0.96	1.28	1.65	1.84	2.35
y_{i}	138	160	178	190	210
\hat{y}_{i}	138				
\hat{e}_{2}	0				

Regression equation $\hat{y}_{i}=90+50 x_{i}$ is used to fill the table where $\hat{e}=y_{i}-\hat{y}_{i}$.
(c) Solve the following system of equations by using Jacobi Method, determine the results for two approximations :

$$
\begin{aligned}
& 3 x+4 y+15 z=54.8 \\
& x+12 y+3 z=39.66 \\
& 10 x+y-2 z=7.74
\end{aligned}
$$

5. (a) Write Short notes on the following :
(i) Binomial Distribution
(ii) Poisson Distribution.
(iii) Normal Distribution
(b) Three bags of same type have the following balls :

Bag 1:2 Black and 1 White

Bag 2: 1 Black and 2 White

Bag 3 : 2 Black and 2 White

One of the bag is selected and one ball is drawn. It turns out to be white. What is the probability of drawing a white ball again :
(i) When the first one is returned/replaced.
(ii) When the first one is not returned/ replaced.
(c) Calculate the correlation coefficient for the following data :

$\mathrm{x}:$	65	66	67	67	68	69	70	72
$\mathrm{y}:$	67	68	65	68	72	72	69	71

Obtain the equations of lines of regression. Also estimate the value of x for $\mathrm{y}=70$.

