No. of Printed Pages : 6

5814 MCSE-004

MCA (Revised)

Term-End Examination, 2019

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 Hours

Maximum Marks: 100

Note : Question No. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

- 1. (a) If 0.333 is the approximate value of (1/3), find absolute, relative and percentage error. [3]
 - (b) Determine the number of iterations required, to obtain the smallest positive root of $x^3 - 2x - 5 = 0$. correct upto two decimal places, when Bisection method is used. [5]
 - (c) Solve the following system of equations using
 Gauss Elimination method : [5]

MCSE-004/6000

- (d) Write probability distribution formula for Binomial distribution and Poisson distribution. [2]
- (e) Determine the value of f(x) at x=4, using LagrangeInterpolation formula on the data given below : [5]

x	1.5	3	6
f(x)	2.5	2	20

- (f) Calculate the value of $\int_{0}^{0.6} e^{x} dx$, correct to five significant figures; by using Simpson's (1/3) rule. (Take n=6). [5]
- (g) If a bank receives on an average $\lambda = 6$ bad cheques per day. What is the probability that it will receive 4 bad cheques on any given day? [5]
- (h) Following data is given for marks in subject A and
 B of certain examination : [7]

	Subject A	Subject B
Mean Marks	36	85
Standard Deviation	11	8

Given, the coefficient of correlation between A and $B = \pm 0.66$.

MCSE-004/6000

(2)

- (i) Determine the two equations of regression.
- (ii) Calculate the expected marks in A, corresponding to 75 marks obtained in B.

(i) For
$$x = 0.5555 E1$$
; $y = 0.4545 E1$ and
 $z = 0.4535 E1$, prove that $x(y-z) \neq xy - xz$.
[3]

- (a) Solve the Quadratic equation $4x^2 + 8x 21 = 0$ using two decimal digit arithmetic with rounding, using any two of the following methods : [10]
 - (i) Bisection method
 - (ii) Secant method
 - (iii) Regula Falsi method
 - (b) Solve the initial value problem $u' = -2tu^2$, with u(0) = 1, h = 0.2 on the interval [0,1]. Use the fourth order classical Runge-Kutta method. [10]
- 3. (a) Obtain the positive root of the equation x² 1 = 0 by Newton-Raphson method, correct to two decimal places. [8]

MCSE-004/6000

2.

(3)

[P.T.O.]

(b) Solve the following system using LU decomposition method : [7]

 $6x_1 - 2x_2 = 14$ $9x_1 - x_2 + x_3 = 21$ $3x_1 + 7x_2 + 5x_3 = 9$

(c) Determine the lowest degree polynomial, which satisfies the following set of values, using forward difference. Also find the polynomial : [5]

·X	0	1	2	3	4	5	6	7
f(x)	0	7	26	63	124	215	342	511

(a) Calculate the value of the Integral $\int_{4}^{5.2} \log x \, dx$ by using Simpson's (1/3) rule and Simpson's (3/8) rule. [10]

(b) Compute the value of R and R² for the data given below, where $R = S_{xy} / \sqrt{S_{xx} S_{yy}}$. [5]

Sample Size (i)	12	21	15	1	24
$\cdot x_i$	0.96	1.28	1.65	1.84	2.35
y_i	138	160	178	190	210
\hat{y}_i	138				
ê ₂	0				

MCSE-004/6000

4

(4)

Regression equation $\hat{y}_i = 90 + 50x_i$ is used to fill the table where $\hat{e} = y_i - \hat{y}_i$.

(c) Solve the following system of equations by using Jacobi Method, determine the results for two approximations : [5]

3x +		4y +	15z =	54.8	
x	+	12y +	3z =	39.66	
10 <i>x</i>	:+	y –	2z =	7.74	

- (a) Write Short notes on the following : [6]
 - (i) Binomial Distribution
 - (ii) Poisson Distribution,
 - (iii) Normal Distribution
 - (b) Three bags of same type have the following balls: [6]
 - Bag 1: 2 Black and 1 White

Bag 2: 1 Black and 2 White

Bag 3 : 2 Black and 2 White

MCSE-004/6000

5.

(5)

[P.T.O.]

One of the bag is selected and one ball is drawn. It turns out to be white. What is the probability of drawing a white ball again :

- (i) When the first one is returned/replaced.
- (ii) When the first one is not returned/ replaced.
- (c) Calculate the correlation coefficient for the following data: [8]

x :	65	66	67	67	68	69	70	72
у:	67	68	65	68	72	72	69	71

Obtain the equations of lines of regression. Also estimate the value of x for y = 70.

----- X -----