Ph.D. IN BIOCHEMISTRY (PHDBC)

Term-End Examination December, 2018

RBC-004: BIOPHYSICAL TECHNIQUES

Time: 3 hours Maximum Marks: 100

Note: The question paper has two sections. **All** sections are **compulsory**. Calculators are allowed.

SECTION - A

Attempt all the questions.

2.5x4=10

- Choose the correct option and justify your answer:
 - (a) A fixed angle rotor exhibits minimum radius at the top of the centrifuge and maximum radius at the bottom of the tube. (T/F)
 - (b) A researcher wants to measure DNA synthesis in an experiment by using radioisotopes. He/ She would use ([³H] thymidine or ³²P label) for this experiment.
 - (c) Two molecules A and B have rod like structures with same molecular weight, thickness and length. However, A has lower sedimentation coefficient (S) than B because it is flexible, while B is rigid. (T/F)

(d)	You just prepared two concentrated
` '	solutions of amino acids tyrosine and leucine
	and forgot to put labels on the bottles. You
	have no more chemical to form the fresh
	solution. You would choose (Spectroscopy/
	Microscopy) technique to distinguish
	between the two solutions.

- 2. Briefly explain any three of the following and give their importance. 3x5=15
 - (a) Calibration curve in spectroscopy
 - (b) Nomograph
 - (c) Half life of radioisotope
 - (d) NMR

SECTION - B

Attempt any five questions.

- 3. Explain the difference between light:
 - (a) Microscopy and electron microscopy.

10

- (b) Briefly explain the role of 'fixation' and 'staining' in microscopy.
- 4. Describe different types of energy:

7

5

(a) Transitions for an electronically excited molecule with the help of Jablonski's diagram.

2

- (b) Write applications of **any two** of the following spectroscopic techniques: 2x4=8
 - (i) Flourescence spectroscopy
 - (ii) Mass spectroscopy
 - (iii) UV-visible spectroscopy
 - (iv) IR- spectroscopy

5.	(a)	What are radioisotopes and why are these used in biochemical studies?	5
	(b)	Enlist commonly used methods for detecting and quantifying radioactivity. Describe any one of these methods in detail.	7
6.	Write	short notes on any three of the following:	
	(a)	Autoradiography 3x5=1	5
	(b)	Electromagnetic spectrum	
	(c)	Circular dichroism	
	(d)	Harmful effects of radioisotopes	
7.	(a)	State the Lambert-Beer's Law and explain the terms absorbance, transmittance and molar absorption coefficient.	8
	(b)	The molar absorption coefficient of benzene is 100 M ⁻¹ cm ⁻¹ at 260 nm. What concentration of benzene would give an absorbance of 1.0 in a 1 cm cell at 260 nm? Also determine the concentration that would allow 1% of 260 nm light to be transmitted through a 1-cm cell.	7
8.	(a)	Write a brief note on 'Viscometry and its applications'.	5
	(b)		10
	, ,	(i) Density gradient and differential centrifugation	
		(ii) Bright field and Dark field microscopy	