M.Phil. / Ph.D. IN CHEMISTRY (MPHILCHEM / PHDCHEM)

Term-End Examination

00342

December, 2018

RCH-002: ANALYTICAL TECHNIQUES IN CHEMISTRY - I

Note: Answer all the questions.

Time: 3 hours

Maximum Marks: 100

- 1. Explain the basic principles of ORD and CD. Give their applications in characterisation 10 of organic compounds.
- 2. Distinguish between EIMS and CIMS. Write the advantages and limitations of these techniques.
- 3. (a) Predict the λ_{max} for the following molecule:

Fredict the λ_{max} for the following molecule:

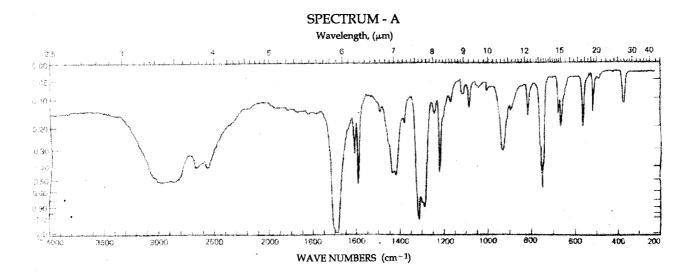
(b) Predict major peaks observed in the mass spectrum of the following compound (M=215):

(Atomic masses of $^{12}C = 12$, N = 14, $O = 16^{79}Br = 79$, $^{81}Br = 81$)

- 4. Select the compounds that best fill the following IR spectral data:
 - (a) 3080(w), nothing 3000-2800, 2230(s), 1450(s), 760(s), 688(s)
 - (b) 2955(s), 2850(s), 1120(s)
 - (c) 3030(m), 730(s), 690(s)
 - (d) 3080(w), nothing 3000-2800, 1315(s), 1300(s), 1155(s)

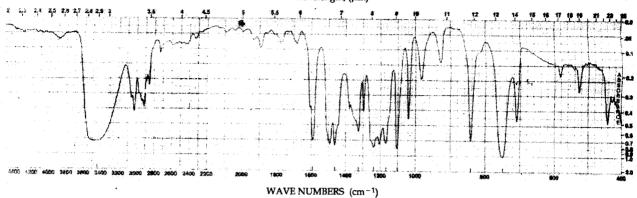
10

(e) 3350(s), 3060(m), 1635(s)

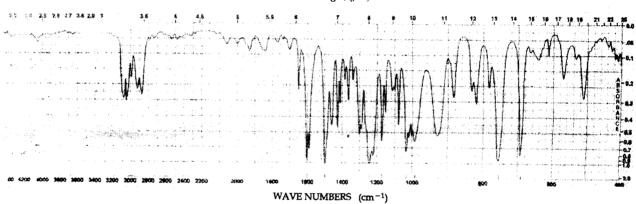

(s = strong, m = medium, w = weak, b = broad)

Each set refers to the list of just a few important bands for each compound.

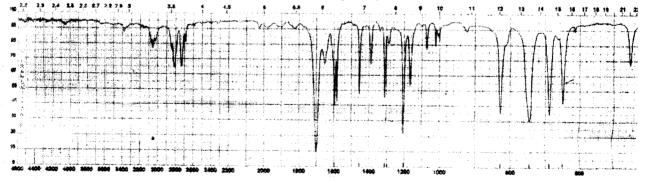
- (i) Benzamide
- (ii) Benzoic acid
- (iii) Benzonitrile
- (iv) Biphenyl
- (v) Dioxane
- (vi) Diphenyl sulfone
- (vii) Formic acid
- (viii) Isobutylamine
- (ix) 1-Nitropropane
- 5. Match the following compounds with their IR spectra.


10

- (a) Allyl phenyl ether
- (b) Benzaldehyde
- (c) o-Cresol
- (d) m-Toluic acid


SPECTRUM - B

Wavelength, (µm)


SPECTRUM - C

Wavelength, (µm)

SPECTRUM - D

Wavelength, (µm)

WAVE NUMBERS (cm -1)

6. (a) Predict the number of peaks that you would expect in the proton-decoupled ¹³C 5 spectrum of each of the following compounds.

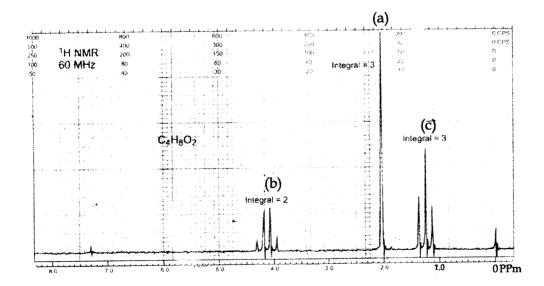
$$\text{(i)} \quad {\overset{O}{\text{CH}_3}} - \overset{\parallel}{\text{C}} - \text{O} - \text{CH}_2 - \text{CH}_3$$

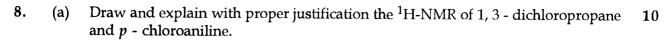
$$(ii) \qquad \begin{matrix} O \\ \parallel \\ C - OH \end{matrix}$$

(b) A compound having molecular formula C₂H₇NO showed the following spectral data:

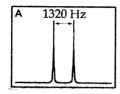
Mass spectrum : (m/z) 61, 30

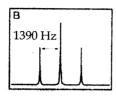
IR spectrum (cm^{-1}) : 3100 - 3400,


2920, 2850


NMR spectrum: $(\delta)2.4 (m, 3H)$

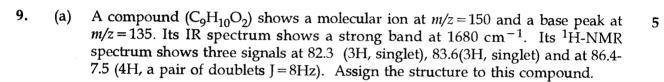
2.9 (t, 2H), 3.7 (t, 2H)


Predict the structure of the compound using the above spectral data.


7. The compound with the formula $C_4H_8O_2$ shows the following ¹H-NMR spectrum. Determine its structure and assign the chemical shift values to various structural units present.



(b) Give reasons while matching the ³¹P NMR spectra below with the appropriate molecule.



5

- (i) PCl₅
- (ii) PCl₃
- (iii) PFCl₂
- (iv) PF₂Cl
- (v) PF_3
- (vi) PF₅

(b) Predict the structure of the compound having molecular formula $C_{15}H_{14}O$ from the following spectral data :

¹H-NMR δ = 2.20 (singlet), 5.08 (singlet), 7.25 (multiplet) with Integration ratio, respectively 3 : 1 : 10.

IR spectrum = 1720 cm^{-1}

10. What is meant by diamagnetic anisotropy in NMR spectroscopy? Give two examples. 10

RCH-002