No. of Printed Pages : 5

MST-001

POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

01182

December, 2018

MST-001 : FOUNDATION IN MATHEMATICS AND STATISTICS

Time : 3 hours

Maximum Marks : 50

Note :

- Question no. 1 is compulsory. Questions no. 2 to 5 have internal choices.
- (ii) Use of scientific calculator is allowed.
- (iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
- (iv) Symbols have their usual meanings.

1. State whether the following statements are *True* or *False*. Give reasons in support of your answers. $5 \times 2 = 10$

(a) If $A = \{a, b, a, b, d\}$, $B = \{5, 6, 7, 7, 9\}$ then $A \sim B$.

(b)
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} = 10$$

MST-001

1

P.T.O.

- (c) The number of hits on IGNOU website on a given day for 30 days is an example of continuous data.
- (d) In exclusive method of classification, each upper class limit is included in the class interval.

5

 $\mathbf{2}$

(e)
$$\int_{2}^{6} 8 \, dx = 32$$
.

- 2. (a) In a group of 500 persons, 400 can speak Hindi and 150 can speak English. Then how many can speak
 - (i) both Hindi and English?
 - (ii) Hindi only?
 - (b) If f(x) = 5 |x 3|, then evaluate f(2), f(-2), f(6), f(-5), f(12).

OR

- (a) Prove that $5^{\frac{1}{3}}$, $5^{\frac{1}{9}}$, $5^{\frac{1}{27}}$... to $\infty = \sqrt{5}$. 2
- (b) Find the number of terms in the following series :

$$-1, -\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, \dots, 14.$$

MST-001

- (c) In how many ways can 3 prizes be distributed among 5 students when
 - (i) No student gets more than one prize ?
 - (ii) No student gets all the prizes ?
 - (iii) A student may get any number of prizes?
- (a) Find the relation between "a" and "b" if the function f(x) is given to be continuous at x = 0, where

$$f(x) = \begin{cases} 2x - a, & x \ge 0\\ ax + b + 3, & x < 0 \end{cases}$$

(b) Find local maximum and minimum values of the function

$$\mathbf{f}(\mathbf{x}) = 4\mathbf{x}^3 - 21\mathbf{x}^2 + 18\mathbf{x} + 9$$

OR

(a) Evaluate :

$$\int x^2 e^{-x} dx$$

(b) Evaluate :

$$\int_{-3}^{3} e^{|2x|} dx$$

MST-001

3

P.T.O.

6

5

5

5

5

4. Solve the following system of equations by Cramer's rule : 10

> x + 3y + 2z = 6- x + 4y + 5z = 82x + 5y + 3z = 10

OR

- (a) Explain four levels of measurement scales in detail with one example in each case.
- (b) What are the differences between primary and secondary data?

4

5

L

5. (a) Draw a percentage bar diagram for the following data:

Category	Cost per unit 1990	Cost per unit 2000
Material	20	32
Labour	25	36
Delivery	5	12
Total	50	80

MST-001

4

(b) Draw a suitable diagram to represent the expenditure of ₹ 100 over different budget heads given as follows, of a family :

Item	Expenditure (in ₹)
Food	25
Clothing	15
Education	20
Transport	10
Outing	10
Miscellaneous	5
Savings	15

OR

(a) Draw a histogram to the following frequency distribution :

Class Interval	Frequency
0 – 10	20
10 - 20	32
20 - 30	8
30 - 40	2
40 - 70	60
70 - 80	35
80 - 100	10

(b) Draw a box plot for the given data :

17, 15, 17, 20, 13, 15, 15, 16, 16, 15, 19, 12, 19, 14, 11, 14, 16, 10, 19, 18, 20, 14, 17, 19, 16, 22, 21, 23, 14, 12, 18, 13, 12, 25, 14, 15, 31, 17, 10, 21.

MST-001

5

5

2,000

5

5