POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

■11日2
December, 2018

MST-001 : FOUNDATION IN MATHEMATICS AND STATISTICS

Time : 3 hours

Maximum Marks : 50
Note:
(i) Question no. 1 is compulsory. Questions no. 2 to 5 have internal choices.
(ii) Use of scientific calculator is allowed.
(iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
(iv) Symbols have their usual meanings.

1. State whether the following statements are True or False. Give reasons in support of your answers.

$$
5 \times 2=10
$$

(a) If $A=\{a, b, a, b, d\}, B=\{5,6,7,7,9\}$ then $\mathrm{A} \sim \mathrm{B}$.
(b) $\operatorname{Lim}_{x \rightarrow 5} \frac{x^{2}-25}{x-5}=10$
(c) The number of hits on IGNOU website on a given day for 30 days is an example of continuous data.
(d) In exclusive method of classification, each upper class limit is included in the class interval.
(e) $\int_{2}^{6} 8 d x=32$.
2. (a) In a group of 500 persons, 400 can speak Hindi and 150 can speak English. Then how many can speak
(i) both Hindi and English ?
(ii) Hindi only? 5
(b) If $f(x)=5-|x-3|$, then evaluate $f(2), f(-2)$, $\mathrm{f}(6), \mathrm{f}(-5), \mathrm{f}(12)$.

OR

(a) Prove that $5^{\frac{1}{3}} \cdot 5^{\frac{1}{9}} \cdot 5^{\frac{1}{27}} \ldots$ to $\infty=\sqrt{5}$.
(b) Find the number of terms in the following series:

$$
\begin{equation*}
-1,-\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, \ldots, 14 \tag{2}
\end{equation*}
$$

(c) In how many ways can 3 prizes be distributed among 5 students when
(i) No student gets more than one prize?
(ii) No student gets all the prizes?
(iii) A student may get any number of prizes?
3. (a) Find the relation between " a " and " b " if the function $f(x)$ is given to be continuous at $x=0$, where

$$
f(x)= \begin{cases}2 x-a, & x \geq 0 \\ a x+b+3, & x<0\end{cases}
$$

(b) Find local maximum and minimum values of the function

$$
\begin{equation*}
f(x)=4 x^{3}-21 x^{2}+18 x+9 \tag{5}
\end{equation*}
$$

OR

(a) Evaluate :

$$
\int x^{2} e^{-x} d x
$$

(b) Evaluate :

$$
\int_{-3}^{3} e^{|2 x|} d x
$$

4. Solve the following system of equations by Cramer's rule :

$$
\begin{aligned}
& x+3 y+2 z=6 \\
& -x+4 y+5 z=8 \\
& 2 x+5 y+3 z=10
\end{aligned}
$$

OR

(a) Explain four levels of measurement scales in detail with one example in each case.
(b) What are the differences between primary and secondary data? 4
5. (a) Draw a percentage bar diagram for the following data :

Category	Cost per unit 1990	Cost per unit 2000
Material	20	32
Labour	25	36
Delivery	5	12
Total	50	80

(b) Draw a suitable diagram to represent the expenditure of $₹ 100$ over different budget heads given as follows, of a family :

Item	Expenditure (in ₹)
Food	25
Clothing	15
Education	20
Transport	10
Outing	10
Miscellaneous	5
Savings	15

OR
(a) Draw a histogram to the following frequency distribution:

Class Interval	Frequency
$0-10$	20
$10-20$	32
$20-30$	8
$30-40$	2
$40-70$	60
$70-80$	35
$80-100$	10

(b) Draw a box plot for the given data : $17,15,17,20,13,15,15,16,16,15,19,12$, $19,14,11,14,16,10,19,18,20,14,17,19$, $16,22,21,23,14,12,18,13,12,25,14,15$, 31, 17, 10, 21.

