No. of Printed Pages : 5

MCH-004

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

00172

December, 2018

MCH-004 : ELECTROANALYTICAL AND OTHER METHODS

Time : 3 hours

Maximum Marks: 75

- **Note :** Answer any **five** questions. All questions carry equal marks. Log-table may be used.
- 1. (a) Illustrate how varying furnace heating rate affects the TG curves ? List other factors, that also affect them.
 - (b) Describe briefly the application of polarography.
 - (c) Compare working of a NaI (Tl) detector with a GeLi detector in terms of resolution and efficiency of detection.
- 2. (a) Explain χ^2 test. How is it useful in evaluating the working of a counter ?

MCH-004

1

P.T.O.

5

5

5

(b) Calculate E_{cell} when a silver and a copper electrode with unit activities are are in contact. $E_{Cu^{2+},Cu}^{o} = + 0.337$ V and $E_{Ag^{+},Ag}^{o} = + 0.799$ V.

5

5

5

5

5

- (c) What do you understand by an ion selective electrode ? Describe any two uses of such electrodes.
- (a) Calculate the pH during titration of 50.00 mL of 0.05 M HCl with 0.10 M NaOH when (i) 10.00 mL of titrant is added, and (ii) 25.50 mL of titrant is added.
- (b) State S.I. units of the following explaining the abbreviations/symbols used :
 - (i) Conductivity
 - (ii) Equivalent conductivity
 - (iii) Molar conductivity at infinite dilution
 - (iv) Resistivity
 - (v) Ionic mobility
- (c) Draw a labelled polarogram and show the following :
 - (i) Half-wave potential
 - (ii) Diffusion current
 - (iii) Limiting current
 - (iv) Residual current

MCH-004

3.

- 4. (a) What is the principle of Differential Thermal Analysis ? Draw a labelled DTA diagram showing exotherm and endotherm.
 - (b) Discuss the advantages of DTA over TGA in case of pure fusion reactions, crystalline transition, glass transition and solid state reactions.
 - (c) Calculate the solubility product of AgCl. Limited molar conductivities of Ag⁺ and Cl⁻ are 0.00619 Sm²mol⁻¹ and 0.00763 Sm²mol⁻¹ respectively; conductivity of AgCl solution at 298 K is $2 \cdot 28 \times 10^{-4}$ Sm⁻¹.
- 5. (a) Distinguish between (i) Polarography and Voltametry, (ii) Linear scan polarography and Pulse polarography. Draw labelled graph of each.
 - (b) Discuss the role of supporting electrolyte with two examples. Does addition of supporting electrolyte affect the $E_{1/2}$ of the electroactive species ?
 - (c) What is the principle of Inverse Isotope Dilution Analysis ? Describe its application. 5

MCH-004

3

5

5

5

P.T.O.

5

- 6. (a) A thermogram shows a loss of 91.0 mg from a total of 175.0 mg of analyte. Identify the compound amongst NH_4NO_3 or MgCO_3 . Write the equation of the reaction in each case.
 - (b) Explain with the aid of a graph, the technique of cyclic voltametry. Give advantages of using a Pt electrode instead of a DME.
 - (c) Explain, what do you understand by the term Cell Constant. Derive mathematical expression to evaluate it.
- 7. (a) Explain, how copper and lead can be deposited during controlled cathode potential electrolysis.
 - (b) 0.180 g of a purified organic acid sample was titrated coulometrically with OH⁻ ions produced in 5.0 minutes by a constant current of 0.514 amp. Calculate the molar mass of the acid if n is 1.
 - (c) Explain any *two* of the following :
 - (i) Standard cell
 - (ii) Calomel electrode
 - (iii) Indicator electrode

MCH-004

4

5

5

5

5

5

- 8. (a) What are the various neutron sources available for neutron activation analysis ? Draw a neutron energy spectrum in a nuclear reactor.
 - (b) Describe all the sources of background activity. Explain how background activity is minimized.
 - (c) Explain thermometric titrations. In what respects are these different from ordinary acid-base titrations ?

MCH-004

1,500

5

5