No. of Printed Pages : 6

MMTE-007

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

70292

December, 2018

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Note :

- *(i)* Question no. 7 is compulsory.
- Attempt any four questions from questions no. *(ii)* 1 to 6.
- Use of scientific and non-programmable calculator (iii) is allowed.
- What are fuzzy relations ? Compute the 1. (a) Cartesian product of two fuzzy sets A and B given below :

$$A = \left\{ \frac{0.3}{x_1} + \frac{0.7}{x_2} + \frac{1}{x_3} \right\} \text{ and } B = \left\{ \frac{0.4}{y_1} + \frac{0.9}{y_2} \right\}$$

function **(b)** Implement NAND using McCulloch-Pitts neuron, for binary data representation given below :

1

T	x ₁	0	0	1	1
Input	x ₂	0	1	0	1

MMTE-007

P.T.O.

4

- **2.** (a) Write short notes on the following with examples :
 - (i) Perceptron Learning Rule
 - (ii) Widrow-Hoff (LMS) Learning Rule
 - (b) Determine the following :
 - (i) Net input to the transfer function
 - (ii) Output of neuron for the following transfer functions :

6

4

6

- I. Hard limit
- II. Linear
- III. Log-sigmoid

for a Neutral network, where input to a single-input neuron is $2 \cdot 0$, weight is $2 \cdot 3$ and bias is -3.

(a) Consider three-layer perceptron with three inputs, three hidden and one output units. Given the initial weight matrix for hidden and output nodes as,

$$W_{H} = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 3 \\ 1 & 4 & 2 \end{bmatrix} \text{ and } W_{0} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

If input vector is $I = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix}$, calculate the output using hard limiting function as activation function.

MMTE-007

- (b) Consider a 5-bit chromosome '10011'. List all the schemas. Find the length and order of each of the schemas.
- (a) Improve the solution of the following problem:

Maximize $f(x) = \sqrt{x}$, subject to

 $1 \le x \le 15$ by considering the length of the string as 4. Show only one iteration.

(b) A small perceptron with two inputs and one output unit is trained using the following training set :

Pattern No.	Input	Output		
1	1	1		
2	0	0		

At some instant, current weights of connections and inputs to the network are as shown below :

(i) What training pattern has been used at that instant?

MMTE-007

4.

3

P.T.O.

4

- (ii) What output will the network produce ?
- (iii) If the network learning rate is 0.25, then find the change in weights w_0 and w_1 .

5

4

6

- (a) How does ADALINE differ from MADALINE ? Discuss the MADALINE architecture with a suitable diagram.
- (b) Consider a data set of five points given in the following table, each of which has two features f_1 and f_2 . Apply FCM algorithm to determine the new cluster centre after one iteration. The initial cluster centres are given by $v_1 = (4, 5)$ and $v_2 = (11, 10)$.

	f_1	f ₂
x ₁	7	12
x ₂	12	3
x ₃	13	8
x ₄	4	4
x 5	5	5

Assume the constants c = m = 2.

6.

5.

(a) State the Travelling Salesman Problem
(TSP) and give an example. Consider the following TSP involving 9-cities :

Parent 1	F	Ι	G	Ε	D	С	Α	H	В
Parent 2	С	В	G	Ι	н	F	D	Е	Α

MMTE-007

Determine the children solution using

- (i) Order Crossover #1, assuming 4th and 7th sites as the Crossover sites.
- (ii) Order Crossover #2, assuming 3rd, 5th and 7th as the key positions.
- (b) Determine the connectivity matrix for the pattern P (four patterns) given below :

	1	1	1	1	0	0	0	0	0	0
D _	0	Q	0	0	0	0	1	1	1	1
P =	1	1	1	1	0	0	0	0	0	1
	1	0	1	0	1	0	1	0	1	0

- 7. State whether the following statements are *True* or *False*. Justify your answer. $5 \times 2 = 10$
 - (a) Back propagation reduces to the LMS algorithm for a Single Layer Linear Network (ADALINE).
 - (b) The offsprings of parents with a high fitness value, have a high fitness value, for any fitness function.
 - (c) In Radial Basis Function (RBF) network, the neurons belonging to the same layer send their output to the neurons of the next and previous layers.

MMTE-007

5

P.T.O.

6

- (d) Hopfield network is a particular case of Kohonen network.
- (e) For any two fuzzy sets A and B and $x \in U$, if $\mu_A(x) = 0.4$ and $\mu_B(x) = 0.8$, then the value of $\mu_{\overline{A} \cup \overline{B}} = 0.4$.

MMTE-007