M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
ロロ2s2
December, 2018

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note:
(i) Question no. 7 is compulsory.
(ii) Attempt any four questions from questions no. 1 to 6.
(iii) Use of scientific and non-programmable calculator is allowed.

1. (a) What are fuzzy relations ? Compute the Cartesian product of two fuzzy sets A and B given below :
$A=\left\{\frac{0.3}{x_{1}}+\frac{0.7}{x_{2}}+\frac{1}{x_{3}}\right\}$ and $B=\left\{\frac{0 \cdot 4}{y_{1}}+\frac{0.9}{y_{2}}\right\}$
(b) Implement NAND function using McCulloch-Pitts neuron, for binary data representation given below :

Input	x_{1}	0	0	1	1
	x_{2}	0	1	0	1

2. (a) Write short notes on the following with examples:
(i) Perceptron Learning Rule
(ii) Widrow-Hoff (LMS) Learning Rule
(b) Determine the following :
(i) Net input to the transfer function
(ii) Output of neuron for the following transfer functions :
I. Hard limit
II. Linear
III. Log-sigmoid
for a Neutral network, where input to a single-input neuron is 2.0 , weight is $2 \cdot 3$ and bias is -3 .
3. (a) Consider three-layer perceptron with three inputs, three hidden and one output units. Given the initial weight matrix for hidden and output nodes as,

$$
W_{H}=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 3 & 3 \\
1 & 4 & 2
\end{array}\right] \text { and } W_{0}=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

If input vector is $I=\left[\begin{array}{lll}4 & 5 & 1\end{array}\right]$, calculate the output using hard limiting function as activation function.
(b) Consider a 5 -bit chromosome ' 10011 '. List all the schemas. Find the length and order of each of the schemas.
4. (a) Improve the solution of the following problem :
Maximize $f(x)=\sqrt{x}$, subject to
$1 \leq x \leq 15$ by considering the length of the string as 4 . Show only one iteration.
(b) A small perceptron with two inputs and one output unit is trained using the following training set :

Pattern No.	Input	Output
1	1	1
2	0	0

At some instant, current weights of connections and inputs to the network are as shown below :

(i) What training pattern has been used at that instant?
(ii) What output will the network produce?
(iii) If the network learning rate is 0.25 , then find the change in weights w_{0} and w_{1}.
5. (a) How does ADALINE differ from MADALINE ? Discuss the MADALINE architecture with a suitable diagram.
(b) Consider a data set of five points given in the following table, each of which has two features f_{1} and f_{2}. Apply FCM algorithm to determine the new cluster centre after one iteration. The initial cluster centres are given by $v_{1}=(4,5)$ and $v_{2}=(11,10)$.

	f_{1}	f_{2}
x_{1}	7	12
x_{2}	12	3
x_{3}	13	8
x_{4}	4	4
x_{5}	5	5

Assume the constants $\mathrm{c}=\mathrm{m}=2$.
6. (a) State the Travelling Salesman Problem (TSP) and give an example. Consider the following TSP involving 9 -cities :

Parent 1	F	I	G	E	D	C	A	H	B
Parent 2	C	B	G	I	H	F	D	E	A

Determine the children solution using
(i) Order Crossover \#1, assuming $4^{\text {th }}$ and $7^{\text {th }}$ sites as the Crossover sites.
(ii) Order Crossover \#2, assuming $3^{\text {rd }}, 5^{\text {th }}$ and $7^{\text {th }}$ as the key positions.
(b) Determine the connectivity matrix for the pattern P (four patterns) given below :

$$
P=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

7. State whether the following statements are True or False. Justify your answer.
(a) Back propagation reduces to the LMS algorithm for a Single Layer Linear Network (ADALINE).
(b) The offsprings of parents with a high fitness value, have a high fitness value, for any fitness function.
(c) In Radial Basis Function (RBF) network, the neurons belonging to the same layer send their output to the neurons of the next and previous layers.
(d) Hopfield network is a particular case of Kohonen network.
(e) For any two fuzzy sets A and B and $x \in U$, if $\mu_{A}(x)=0.4$ and $\mu_{B}(x)=0.8$, then the value of $\mu_{\bar{A} \cup \bar{B}}=0.4$.
