M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
December, 2018

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50
Note: Answer any four questions out of questions no. 1 to 5. Question no. 6 is compulsory. Calculators are not allowed.

1. (a) Using the Extended Euclidean algorithm, find the multiplicative inverse of $139(\bmod 141)$.
(b) Carry out one round of encryption of the text 100110110110 using the toy block cipher with the key 101111011. The S-boxes are given below :
$S_{1}\left[\begin{array}{llllllll}101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011\end{array}\right]$
$S_{2}\left[\begin{array}{llllllll}100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 000\end{array}\right]$
MMTE-006
P.T.O.
(c) Define the Euler ϕ-function. Compute $\phi(8)$ and $\phi(45)$.
2. (a) Check whether the following sequence passes the runs test with, level of significance $\alpha=0 \cdot 05$, using the values :

$$
\begin{aligned}
& \chi_{0 \cdot 05,4}^{2}=9 \cdot 48773, \chi_{0 \cdot 05,5}^{2}=11 \cdot 0705 \\
& 0000110000001010000100100 \\
& 1110111011100010001001100 \\
& 1000100000000110100000110 \\
& 1111111010010110100001100 \\
& 1001101000001110110111010 \\
& 1110111011100011001001100 \\
& 1010010000
\end{aligned}
$$

(b) Factorise 4891 using the Fermat factorisation method.
3. (a) Suppose f: $\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$ is a pre-image resistant bijective function. Define

$$
\begin{aligned}
& h:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n} \text { as follows : } \\
& \text { Given } x \in\{0,1\}^{2 n}, \text { write } x=x^{\prime} \| x^{\prime \prime} \\
& \text { where } x^{\prime}, x^{\prime \prime} \in\{0,1\}^{n} .
\end{aligned}
$$

Then define $h(x)=f\left(x^{\prime} \oplus x^{\prime \prime}\right)$. Prove that h is not second pre-image resistant.
(b) Suppose Alia chooses $p=167, q=83$, $\mathrm{g}=5, \mathrm{a}=7$ and makes the values $(p, q, \alpha, \beta)=(167,83,25,126)$ public. What will be the signature for the message $M=25$ if she chooses $k=7$? If she sends the message to Babu along with the signature, how will he verify the signature?
4. (a) Encrypt the plain text 'TCCCRICKETWORLDCUPINAUSTRALIA' cipher using the key 'MACS'.
(b) Suppose Asha wants to use RSA cryptosystem with parameters $p=19$, $q=13, e=11$.
(i) Find the decryption key.
(ii) What are the values that Asha makes public?
(iii) What will the encrypted text for the message 17 ?
(iv) Asha receives the message 2 from Bhola. What is the original message?
5. (a) Construct a finite field of order 8. Write the multiplication table of the field.
(b) Given the initial sequence 101001, find the linear recurrence that generates the sequence.
6. Which of the following statements are True and which are False? Give reasons for your answers. 10
(a) There is no finite field of order 9.
(b) An S-Box provides the security property of diffusion.
(c) Hash algorithms provide confidentiality and integrity.
(d) The composition of two affine ciphers is again an affine cipher.
(e) The key space of an RSA cryptosystem is finite.

