M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

ロロKEZ Term-End Examination
December, 2018

MMTE-004 : COMPUTER GRAPHICS

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any three questions out of questions no. 2 to 5. Use of calculator is not allowed.

1. State whether the following statements are True or False. Justify your answers.
(a) The height of the resized image 1024×768 to one that is 640 pixels wide with the same aspect ratio is 480 .
(b) The anti-aliasing technique which allows shift of $\frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$ of a pixel diameter enabling a closer path of a line is Pixel phasing.
(c) Frame buffer is the device which controls the refresh rate.
(d) Uniform scaling and rotation form a commutative pair of operations.
(e) The projection matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -\frac{5}{3} & -\frac{8}{3} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

represents a parallel projection on xy plane.
2. (a) Differentiate between oblique and orthogonal projections. 2
(b) Plot a circle at $(5,5)$ having a radius of 5 units using mid-point circle algorithm.
3. (a) Find the transformation matrix that reduces the square $A B C D$, whose centre is at $(2,2)$, to half of its size, with centre still remaining at $(2,2)$. The coordinates of the square $A B C D$ are $\mathrm{A}(0,0), \mathrm{B}(0,4), \mathrm{C}(4,4)$ and $\mathrm{D}(4,0)$. Find the coordinates of the new square.
(b) Write the output obtained after executing the following statements :
glColor3f(1, 1, 1)
glColor3f ($0,1,0$)
glVertex3f (1, 1, 1)
glColor3f ($1,0,0$)
glVertex3f (2, 2, 2)
4. Find the equation of the Bezier curve which passes through the points $(0,0)$ and $(-2,1)$ and is controlled through points $(7,5)$ and $(2,0)$.
5. Let R be the rectangular window whose lower left hand corner is at $(-4,1)$ and upper right hand corner is at $(3,6)$. Find the region code for the following segments and state whether they are partially visible, fully visible or invisible :
(a) $\mathrm{A}(-5,2)$ to $\mathrm{B}(-1,7)$
(b) $\mathrm{C}(-2,3)$ to $\mathrm{D}(1,2)$
(c) $\mathrm{E}(-5,7)$ to $\mathrm{F}(-2,10)$

Further apply the Cohen-Sutherland algorithm to clip these line segments.

