## M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

00922

Term-End Examination
December, 2018

**MMTE-001: GRAPH THEORY** 

Time: 2 hours

Maximum Marks: 50

(Weightage: 50%)

Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6. Electronic computing devices are not allowed. Draw diagrams wherever necessary.

- 1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example.  $5\times2=10$ 
  - (a) A simple graph with ten vertices has at most 45 edges only.
  - (b) Any connected 2-regular graph is a cycle.
  - (c) There are graphs G with  $\kappa(G) < \kappa'(a)$ .
  - (d) Deleting some edge-cut of size 3 in the Petersen graph isolates a vertex.
  - (e) Every planar graph is three-colourable.

|    | (a) | Det V = (u, v, w, x, y, z) and                           |   |
|----|-----|----------------------------------------------------------|---|
|    |     | $E = \{uv, uz, vw, wx, xy, uy, vx, wz, yz\}.$            |   |
|    |     | Check whether the graph $G(V, E)$ is regular             |   |
|    |     | or not. If it is regular, what is the degree of          |   |
|    |     | regularity?                                              | 3 |
|    | (b) | Find the chromatic number of the graph                   |   |
|    |     | described in part (a).                                   | 3 |
|    | (c) | Define the girth of a graph and find the                 |   |
|    |     | girth of the Petersen graph.                             | 4 |
| 3. | (a) | Prove that an edge in a graph is a cut-edge              |   |
|    |     | if and only if it belongs to no cycle.                   | 4 |
|    | (b) | A connected graph is Eulerian if and only if             |   |
|    |     | every vertex of it is of even degree.                    | 6 |
| 4. | (a) | If G is an acyclic graph with n vertices and             |   |
|    |     | n-1 edges, then it is a tree.                            | 3 |
|    | (b) | Prove that every simple graph with at least              |   |
|    |     | two vertices has two vertices of equal                   |   |
|    |     | degree.                                                  | 4 |
|    | (c) | If G is a simple graph of diameter at least              |   |
|    |     | three, then prove that diameter $(\overline{G}) \le 3$ . | 3 |

2

5. (a) Prove that a matching M in a graph G is a maximum matching in G if and only if G has no M-augmenting path.

5

(b) If G is a simple graph, prove that  $\kappa(G) \le \kappa'(G) \le \delta(G)$ , with usual notations.

5

6. (a) For the following graph, find

4

- (i) the clique number,
- (ii) the independence number, and
- (iii) a perfect matching, if any.



(b) Examine the planarity of the graph given in part (a) and draw a plane embedding, if it is planar.

3

(c) Define Hamiltonian closure of a graph and prove that it is well-defined.

3