No. of Printed Pages: 4

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

00722

Term-End Examination
December, 2018

MMT-006: FUNCTIONAL ANALYSIS

Time: 2 hours

Maximum Marks: 50

(Weightage: 70%)

Note: Question no. 6 is compulsory. Attempt any four of the remaining questions. Use of calculators is not allowed. Notations as in the study material.

1. (a) In a normed linear space X, prove that the closed ball, $\overline{u}(x, r)$ is a convex set for any $x \in X$, and r > 0.

3

(b) State and prove the uniform boundedness principle.

5

(c) Let $A \in BL(\mathbf{R}^3)$ be represented by the matrix $\begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$

$$\begin{bmatrix} -1 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Find $\sigma(A)$.

2

2. (a) Prove that $(C_{00}, 11 \cdot 11_p)$ is not a Banach Space for any $1 \le p \le \infty$.

3

(b) State and prove Bessel's inequality for a finite orthonormal set in an inner product space.

3

(c) Let $X = \mathbb{C}^2$ and $\alpha_1, \alpha_2, \in \mathbb{C}$. Let $A: X \to X$ be given by

$$A(x_1, x_2) = (\alpha_1 x_1, \alpha_2 x_2), x_1, x_2 \in \mathbb{C}.$$

Prove that

- (i) A is normal
- (ii) A is self-adjoint $\Leftrightarrow \alpha_1, \alpha_2 \in \mathbf{R}$
- (iii) A is unitary $\Leftrightarrow |\alpha_1| = 1 = |\alpha_2|$

4

3. (a) Let Y be a closed subspace of a normed linear space X. Show that X is complete $\Leftrightarrow Y \text{ and } \frac{X}{Y} \text{ are complete}.$

5

(b) Define a reflexive normed linear space.

Prove that if a normed space X is reflexive
then its dual space is also reflexive. What
about the converse? Justify your answer.

5

4. (a) Prove that the dual space of l^{∞} contains a proper subspace which is linearly isometric to l^{1} .

4

(b) Define $T: (C([0, 1]), 11.11_{\infty}) \to \mathbb{C}$ by

$$T_f = \int_0^1 f(t) dt.$$

Show that T is bounded and find ||T||.

3

3

3

(c) Let $X = L^2[0, 1]$ with $11 \cdot 11_2$ given by

$$\| f \|_{2} = \left(\int_{0}^{1} |f(t)|^{p} dt \right)^{1/p}, f \in X.$$

Let f and g be functions given by

$$f(t) = t$$
, $g(t) = 1 - t$, $\forall t \in [0, 1]$. Show that $\| f + g \|_2^2 + \| f - g \|_2^2 = 2(\| f \|_2^2 + \| g \|_2^2)$.

- 5. (a) Let Y be a subspace of a normed linear space X and let a ∈ X such that a ∉ Ȳ.
 Show that ∃ f ∈ X' such that f(y) = 0 ∀ y ∈ Y,
 f(a) = dist (a, Ȳ) and || f || = 1.
 - (b) Let $x_n(t) = t^n$ for $n = 0, 1, 2, ..., -1 \le t \le 1$.

 Prove
 - (i) $\{x_0, x_1, x_2, ...\}$ is linearly independent in $L_2([-1, 1])$.
 - (ii) Apply the Gram-Schmidt process on $\{x_0, x_1, x_2, ...\}$ to determine the first three vectors in the orthonormal set.

4

- (c) Let X be a normed space, $z \in X$ and $f \in X'$. Show that $T: X \to X$ defined by T(x) = f(x)z, $x \in X$ is linear and compact.
- 3
- **6.** Are the following statements True or False?

 Justify your answers. $5\times 2=10$
 - (a) If X is a normed linear space over \mathbf{R} and suppose $f(x) = 0 \ \forall \ f \in X'$, then x = 0.
 - (b) On an infinite dimensional normed linear space every linear function is continuous.
 - (c) If $T: X \to Y$ is linear, continuous and open, then T is subjective.
 - (d) In an inner product space if $x \neq 0$, then $\langle x, y \rangle \neq 0$ for some y.
 - (e) Any two separable Hilbert spaces need not be isometric.