No. of Printed Pages: 4

MMT-004

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2018

MMT-004 : REAL ANALYSIS

Time : 2 hours

nn422

Maximum Marks : 50 (Weightage : 70%)

- Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 6. Calculators are not allowed.
- 1. State whether the following statements are *True* or *False*. Give reasons for your answers. $5\times 2=10$
 - (a) The set $\left\{1, \frac{1}{2}, \frac{1}{3}, ...\right\}$ is neither dense nor nowhere dense in (\mathbf{R}, \mathbf{d}) .
 - (b) (1, 0, -1) is a critical point of the function f(x, y, z) = 1 + |x| + |y| + |z|.
 - (c) Every closed and bounded subject of a metric space is compact.

MMT-004

P.T.O.

- (d) If a set E has finite measure, then $L^1(E) \subset L^2(E).$
- (e) Let $\mathbf{E}_n = \begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}$, then $\mathbf{m}^* (\cap \mathbf{E}_n) = 0$.
- 2. (a) Show that there is a continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ such that

$$f(\mathbf{x}, \mathbf{y}) = 1 \text{ if } (\mathbf{x} + 1)^2 + (\mathbf{y} - 1)^2 \le \frac{1}{2} \text{ and}$$

$$f(\mathbf{x}, \mathbf{y}) = 2 \text{ if } (\mathbf{x} + 1)^2 + (\mathbf{y} + 1)^2 \le \frac{1}{2}.$$
 2

(b) Find the directional derivative of the function

 $f(x, y, z, w) = (x^2 - y^2, 2xy, zx, z^2w^2x^2)$ at the point (1, 2, -1, -2) in the direction of (2, 1, -2, -1).

3

5

5

(c) Let $|f_n|$ be a monotonically increasing sequence of non-negative measurable functions converging to a function f. Is f measurable ? Justify your answer. Prove also that

$$\lim_{n \to \infty} \int_{E} f_n dm = \int_{E} f dm$$

3. (a) Define component of a metric space. Show that a metric space can be written as a disjoint union of its components and that each connected subset of the space intersects only one of them.

MMT-004

(b) Suppose f is a non-negative measurable function. Prove that

 $\int_{\mathbf{R}} f \, d\mathbf{m} = 0 \text{ if and only if } f = 0 \text{ a.e.}$

Is this result true if the non-negative condition is dropped ? Justify your answer.

- 4. (a) Let X, Y be metric spaces and $f: X \to Y$ a map. Prove that f is continuous if and only if for every open set $V \subset Y$, the set $f^{-1}(V)$ is open in X.
 - (b) For the function $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f(x, y, z) = (x^2y, y^2z + z^2, -2x),$ find $f'(1, 1, -\frac{1}{2}).$
 - (c) Define the Fourier transform of the function $f \in L^1(\mathbf{R})$. Find the Fourier transform of the function $f = \chi_E$ where $E\left[0, \frac{1}{2}\right]$.
- 5. (a) Let (X, d) be a metric space with $X \neq \{0\}$ and $x \in X$ and 0 < r < s. Show that $B[x, r] \subseteq B[x, s]$. Give an example to show that it is possible to have B[x, r] = B[x, s].
 - (b) Obtain the 2nd order Taylor's series expansion of the function

$$f(x_1, x_2) = x_1^2 x_2^4 + x_1^3 e^{x_2} at (1, 1).$$

MMT-004

3

P.T.O.

5

4

3

3

3

4

(c) When is a function said to satisfy the Lipschitz condition ? If f is an integrable function on $[-\pi, \pi]$, which satisfies the Lipschitz condition on $[-\pi, \pi]$, prove that

$$\lim_{n \to \infty} \mathbf{S}_n(\mathbf{f}; \theta) = \mathbf{f}(\theta).$$

- 6. (a) Show that every convergent sequence in a metric space (X, d) is a Cauchy sequence. Is the converse true ? Justify your answer.
 - (b) Let $f = (f_1, f_2)$ be a vector valued function from \mathbf{R}^5 to \mathbf{R}^2 where f_1, f_2 are defined by $f_1(x_1, x_2, y_1, y_2, y_3) = 2e^{x_1} + x_2y_1 - 4y_2 + 3$ $f_2(x_1, x_2, y_1, y_2, y_3) = x_2 \cos x_1 - 6x_1 + 2y_1 - y_3.$

Prove that f defines a unique function $g: \mathbb{R}^3 \to \mathbb{R}^2$ in a neighbourhood of (3, 2, 7) such that g(3, 2, 7) = (0, 1).

(c) Prove that the system

$$g(t) = \Re(f(t)) = \int_{-\infty}^{2t} f(\tau) d\tau$$

is a causal system.

MMT-004

4

1,000

3

4

4

2