M.Sc. (MATHEMATICS WITH APPLICATIONS

 IN COMPUTER SCIENCE)M.Sc. (MACS)

Term-End Examination
December, 2018

MMT-004 : REAL ANALYSIS

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 6. Calculators are not allowed.

1. State whether the following statements are True or False. Give reasons for your answers. $5 \times 2=10$
(a) The set $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ is neither dense nor nowhere dense in (\mathbf{R}, d).
(b) $(1,0,-1)$ is a critical point of the function $f(x, y, z)=1+|x|+|y|+|z|$.
(c) Every closed and bounded subject of a metric space is compact.
(d) If a set E has finite measure, then $L^{1}(E) \subset L^{2}(E)$.
(e) Let $\mathrm{E}_{\mathrm{n}}=\left[0, \frac{1}{\mathrm{n}}\right]$, then $\mathrm{m}^{*}\left(\cap \mathrm{E}_{\mathrm{n}}\right)=0$.
2. (a) Show that there is a continuous function $\mathbf{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that

$$
\begin{align*}
& f(x, y)=1 \text { if }(x+1)^{2}+(y-1)^{2} \leq \frac{1}{2} \text { and } \\
& f(x, y)=2 \text { if }(x+1)^{2}+(y+1)^{2} \leq \frac{1}{2} \tag{2}
\end{align*}
$$

(b) Find the directional derivative of the function

$$
f(x, y, z, w)=\left(x^{2}-y^{2}, 2 x y, z x, z^{2} w^{2} x^{2}\right)
$$

at the point $(1,2,-1,-2)$ in the direction of ($2,1,-2,-1$).
(c) Let $\left|f_{n}\right|$ be a monotonically increasing sequence of non-negative measurable functions converging to a function f. Is f measurable ? Justify your answer. Prove also that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E} f_{n} d m=\int_{E} f d m \tag{5}
\end{equation*}
$$

3. (a) Define component of a metric space. Show that a metric space can be written as a disjoint union of its components and that each connected subset of the space intersects only one of them.
(b) Suppose f is a non-negative measurable function. Prove that

$$
\int_{\mathbf{R}} \mathrm{fdm}=0 \text { if and only if } f=0 \text { a.e. }
$$

Is this result true if the non-negative condition is dropped? Justify your answer.
4. (a) Let X, Y be metric spaces and $f: X \rightarrow Y$ a map. Prove that f is continuous if and only if for every open set $V \subset Y$, the set $f^{-1}(V)$ is open in X.
(b) For the function $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by

$$
f(x, y, z)=\left(x^{2} y, y^{2} z+z^{2},-2 x\right)
$$

find $f^{\prime}\left(1,1,-\frac{1}{2}\right)$.
(c) Define the Fourier transform of the function $f \in L^{1}(\mathbf{R})$. Find the Fourier transform of the function $f=\chi_{E}$ where $E\left[0, \frac{1}{2}\right]$.
5. (a) Let (X, d) be a metric space with $X \neq\{0\}$ and $\mathrm{X} \in X$ and $0<r<s$. Show that $B[x, r] \subseteq B[x, s]$. Give an example to show that it is possible to have $B[x, r]=B[x, s]$.
(b) Obtain the $2^{\text {nd }}$ order Taylor's series expansion of the function

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{4}+x_{1}^{3} e^{x_{2}} \text { at }(1,1) \tag{4}
\end{equation*}
$$

(c) When is a function said to satisfy the Lipschitz condition? If f is an integrable function on $[-\pi, \pi]$, which satisfies the Lipschitz condition on $[-\pi, \pi]$, prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{n}(f ; \theta)=f(\theta) . \tag{3}
\end{equation*}
$$

6. (a) Show that every convergent sequence in a metric space (X, d) is a Cauchy sequence. Is the converse true? Justify your answer.
(b) Let $f=\left(f_{1}, f_{2}\right)$ be a vector valued function from \mathbf{R}^{5} to \mathbf{R}^{2} where f_{1}, f_{2} are defined by

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)=2 e^{x_{1}}+x_{2} y_{1}-4 y_{2}+3 \\
& f_{2}\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)=x_{2} \cos x_{1}-6 x_{1}+2 y_{1}-y_{3} .
\end{aligned}
$$

Prove that f defines a unique function $\mathbf{g}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ in a neighbourhood of $(3,2,7)$ such that $g(3,2,7)=(0,1)$.
(c) Prove that the system

$$
g(t)=\dot{S}(f(t))=\int_{-\infty}^{2 t} f(\tau) d \tau
$$

is a causal system.

