M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2018

MMT-003 : ALGEBRA

Time: 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Answer any 4 of the remaining five questions. \boldsymbol{Q} denotes the field of rationals, \boldsymbol{R} the field of real numbers and \boldsymbol{Z}_{p} the finite field with p elements.

1. Which of the following statements are true ? Give reasons for your answers. Marks will be given for the correct reasons only. $5 \times 2=10$
(a) If G is the free group generated by $\{a, b\}$ and H is the subgroup generated by $\{\mathrm{a}\}$, then H is a normal subgroup of G .
(b) $\quad \mathrm{X}^{2}+\overline{1}$ factors into linear factors in $\mathbf{Z}_{13}[\mathrm{X}]$.
(c) The dimensions of all the irreducible complex representations of a group of order 49 must all be 1 .
(d) If k is a field, then so is $\mathrm{k} \times \mathrm{k}$.
(e) The degree of $\mathbf{Q}(\omega) / \mathbf{Q}$ is 3 , where ω is a primitive cube root of unity.
2. (a) Why is the polynomial $X^{8}-2$ irreducible over \mathbf{Q} ? What is its splitting field K and what is the degree of the splitting field over Q ? Write down an element of order 2 in the Galois group of K over \mathbf{Q}, giving the action of the group element on a set of generators of K over \mathbf{Q}.
(b) Find all the non-isomorphic abelian groups of order 32 .
3. (a) What is the degree of $\mathbf{Q}(\sqrt[3]{7}, \sqrt[5]{3})$ over \mathbf{Q} ? Justify your answer. Is the polynomial $\mathrm{X}^{5}-5 \in \mathbf{Q}[\mathrm{X}]$ irreducible over $\mathbf{Q}(\sqrt[3]{7})$? Give reasons for your answer.
(b) Let $\mathrm{G}=\mathrm{A}_{4}$, and H be the cyclic subgroup generated by the permutation (123). Let G / H be the set of left cosets of H in G . What is the natural action of G on G / H ? Determine all the elements of the stabiliser of (12)(34) H under this action. Further, what is the cardinality of the orbit of (12)(34) H ?
4. (a) Let $S=\frac{Z_{5}[X]}{\left(X^{3}+X+\overline{1}\right)}$. How many elements does S have? Justify your answer. Is S a field ? Justify your answer.
(b) Determine the conjugacy classes of A_{5} and the class equation for A_{5}.
(c) Check whether or not ($\mathrm{W},+$) is a free semigroup, where W is the set of whole numbers.
5. (a) Use the Sylow theorems to show that a group of order $p q$ where p and q are prime numbers $\mathrm{p}<\mathrm{q}, \mathrm{p} \dagger(\mathrm{q}-1)$ must be cyclic. Give an example to show that if p divides ($q-1$), then the group of order pq may not be cyclic.
(b) If a stands for a digit between 0 and 9 , give one value of a for which 8278a19051 is a valid ISBN number.
6. (a) Let $X=Z_{2}^{n}$. Define a subset of X to be a block if it has 4 elements that add up to \mathbf{O} in $\mathbf{Z}_{2}^{\mathbf{n}}$. Find the values of the parameters v, k, λ for this design, where $\tau=3$. Further, if $\tau=2$, what will the values of these parameters be?
(b) Complete the following character table of a group of order 12 :

	1 x_{1}	3 x_{2}	4 x_{3}	4 x_{4}
χ_{1}	1	1	ω^{2}	ω
χ_{2}	3	-1	0	0

where ω is a primitive cube root of unity.

