BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination December, 2018

03542

ELECTIVE COURSE: MATHEMATICS
MTE-02: LINEAR ALGEBRA

Time: 2 hours

Maximum Marks: 50

(Weightage: 70%)

Note: Question no. 7 is compulsory. Attempt any four questions from questions no. 1 to 6. Use of calculators is not allowed.

1. (a) Let

$$W = \{(x_1,\,x_2,\,x_3) \in {\bf R}^3: x_2+x_3=0\}.$$

Show that W is a subspace of \mathbb{R}^3 . Find two subspaces W_1 and W_2 of \mathbb{R}^3 such that $\mathbb{R}^3 = \mathbb{W} \oplus \mathbb{W}_1$ and $\mathbb{R}^3 = \mathbb{W} \oplus \mathbb{W}_2$ but $\mathbb{W}_1 \neq \mathbb{W}_2$.

- (b) Find a unit vector in \mathbb{R}^3 that is orthogonal to (1, 2, 1) and (1, -1, 2).
- 2. (a) Let P_4 be the vector space over R of the set of all polynomials of degree at most four. Show that $1 + x + x^4$ and $1 + x^3$ are linearly independent. Find a basis of P_4 consisting of vectors $1 + x + x^4$ and $1 + x^3$.

4

7

(b) Let

T:
$$\mathbb{R}^3 \to \mathbb{R}^2$$
 given by
T(x₁, x₂, x₃) = (x₂ + x₃, x₂ - x₃).

Prove that T is a linear transformation. Find the rank of T. Can we find a such that (3, 2, a) is in the kernel of T? Give reasons for your answer.

(c) Find the values of $a, b \in \mathbb{C}$ for which the matrix

$$\begin{bmatrix} 1 & i & 1+i \\ a & b+i & 2-i \\ 1-i & 2+i & 1 \end{bmatrix}$$
 is Hermitian. 2

- 3. (a) Let V be a finite-dimensional vector space over a field K and let $T:V\to V$ be a linear transformation. Prove that T is one-one if and only if T is onto.
 - (b) Find the eigenvalues and the eigenspaces of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$
. Is A diagonalisable?

Give reasons for your answer.

5

5

4. (a) Reduce the

$$\begin{bmatrix} 0 & 2 & -4 \\ -1 & -4 & 5 \\ 3 & 1 & 7 \\ 0 & 5 & -10 \end{bmatrix}$$
 to the row-reduced

echelon form. At each stage, state the row operation you are using. Also give the rank of this matrix.

(b) Use Cayley-Hamilton theorem to evaluate A^8 , where

$$\mathbf{A} = \begin{bmatrix} 1 & 24 & \frac{1}{5} \\ 0 & 0 & 7 \\ 0 & 0 & -1 \end{bmatrix}.$$

- (c) Give two distinct elements, with justification, of $\mathbf{R}^5/\mathbf{R}^3$.
- 5. (a) Use the Fundamental Theorem of Homomorphism to prove that $C^5/C^4 \simeq C$.
 - (b) Find an orthonormal basis for a subspace $W=\{(x_1,\,x_2,\,x_3,\,x_4)\in {\bf C}^4\,\big|\,x_1+ix_2=0,\\ x_2+x_3-x_4=0\}\text{ of }{\bf C}^4.$

4

4

6. (a) Find the real quadratic form represented by the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ & \\ 1 & 3 \end{bmatrix}.$$

Also, obtain a set of principal axes for it, and hence reduce it to its normal canonical form.

5

(b) Find the vector equation of the plane determined by the points (0, 2, 1), (2, 1, 0), (1, -1, 0). Further, check whether the line $\mathbf{r} = (1 + 2\alpha) \mathbf{i} + (2 - 3\alpha) \mathbf{j} - (1 + 5\alpha) \mathbf{k}$ intersects this plane. If it intersects, find the point of intersection. If the line and plane do not intersect, find the equation of another line that intersects this plane.

- 7. Which of the following statements are True and which are False? Justify your answers either with a short proof or a counter-example. $5\times 2=10$
 - (a) If $T : \mathbb{R}^5 \to \mathbb{R}^3$ is a linear transformation, then there is $u \neq 0$ in \mathbb{R}^5 such that T(u) = 0.
 - (b) A 3×3 matrix of rank one has an eigenvalue zero.
 - (c) An orthonormal set of vectors is a linearly independent set.
 - (d) If U and V are subspaces of a finite-dimensional vector space W, then $\dim \, (U\cap V) \geq 1.$
 - (e) The relation '~' on \mathbb{Z}^2 , given by (a, b) ~ (c, d) \Leftrightarrow (a b) | (c d) is an equivalence relation.

स्नातक उपाधि कार्यकम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर, 2018

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-02: रैखिक बीजगणित

समय : २ घण्टे

.अधिकतम अंक : 50

(कुल का : 70%)

प्रश्न सं. 7 अनिवार्य है । प्रश्न सं. 1 से 6 में से किन्हीं चार नोट : प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

(क) मान लीजिए

 $W = \{(x_1, x_2, x_3) \in \mathbf{R}^3 : x_2 + x_3 = 0\}.$

दिखाइए कि W. \mathbb{R}^3 की उपसमिष्टि है । \mathbb{R}^3 की ऐसी दो उपसमष्टियाँ W₁ और W₂ ज्ञात कीजिए जिनके लिए $\mathbf{R}^3 = \mathbf{W} \oplus \mathbf{W}_1$ और $\mathbf{R}^3 = \mathbf{W} \oplus \mathbf{W}_2$ लेकिन $W_1 \neq W_2$.

- (ख) \mathbb{R}^3 का एक ऐसा मात्रक सदिश ज्ञात कीजिए, जो (1, 2, 1) और (1, -1, 2) के सापेक्ष लांबिक है। 3
- (a) मान लीजिए P_4 , R पर अधिक-से-अधिक 4 घात वाले सभी बहुपदों के समुच्चय की सदिश समष्टि है । दिखाइए कि $1 + x + x^4$ और $1 + x^3$ रैखिकत: स्वतंत्र हैं । P_4 का वह आधार ज्ञात कीजिए जिसमें सदिश 1 + x + x⁴ और $1 + x^3$ शामिल हैं।

(ख) मान लीजिए

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
,

$$T(x_1, x_2, x_3) = (x_2 + x_3, x_2 - x_3)$$

द्वारा परिभाषित है ।

सिद्ध कीजिए कि T एक रैखिक रूपांतरण है । T की जाति ज्ञात कीजिए । क्या हम ऐसा a ज्ञात कर सकते हैं जिसके लिए (3, 2, a) T की अष्टि में हो ? अपने उत्तर के कारण बताइए ।

(ग) $a, b \in \mathbf{C}$ के वे मान ज्ञात कीजिए जिसके लिए आव्यूह

$$\begin{bmatrix} 1 & i & 1+i \\ a & b+i & 2-i \\ 1-i & 2+i & 1 \end{bmatrix}$$
 हिर्मिटी हो । 2

4

5

- 3. (क) मान लीजिए V क्षेत्र K पर परिमित-विमीय सदिश समष्टि है और मान लीजिए $T:V\to V$ एक रैखिक रूपांतरण है । सिद्ध कीजिए कि T एकैकी है यदि और केवल यदि T आच्छादी है ।
 - (ख) आव्यूह

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$
 के आइगेनमान और

आइगेनसमष्टियाँ ज्ञात कीजिए । क्या A विकर्णनीय है ? अपने उत्तर के कारण बताइए ।

MTE-02

4. (क)
$$\begin{bmatrix} 0 & 2 & -4 \\ -1 & -4 & 5 \\ 3 & 1 & 7 \\ 0 & 5 & -10 \end{bmatrix}$$
 को पंक्ति-समानीत

सोपानक रूप तक समानीत कीजिए । प्रत्येक चरण में बताइए कि आप किस पंक्ति संक्रिया का प्रयोग कर रहे हैं । इस आव्यूह की जाति भी बताइए ।

(ख) कैली-हैमिल्टन प्रमेय का प्रयोग करके A^8 का मूल्यांकन कीजिए, जहाँ

$$\mathbf{A} = \begin{bmatrix} 1 & 24 & \frac{1}{5} \\ 0 & 0 & 7 \\ 0 & 0 & -1 \end{bmatrix}.$$

(7) ${f R}^5/{f R}^3$ के पुष्टि सहित दो अलग-अलग अवयव दीजिए।

5. (क) मूलभूत समाकारिता प्रमेय से सिद्ध कीजिए कि ${f C}^5/{f C}^4 \simeq {f C}.$

(ख) C^4 की उपसमिष्ट

W = {
$$(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 \mid x_1 + ix_2 = 0,$$

 $x_2 + x_3 - x_4 = 0$ }

के लिए प्रसामान्य लांबिक आधार ज्ञात कीजिए । 4

MTE-02

4

6. (क) आव्यूह

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 द्वारा निरूपित वास्तविक

द्विघाती समघात ज्ञात कीजिए । इसके मुख्य अक्षों का समुच्चय भी प्राप्त कीजिए और इस तरह इसे प्रसामान्य विहित रूप तक समानीत कीजिए ।

5

(ख) बिन्दुओं (0, 2, 1), (2, 1, 0) और (1, -1, 0) द्वारा निर्धारित समतल का सिदश समीकरण ज्ञात कीजिए । इसके आगे, जाँच कीजिए कि रेखा $\mathbf{r} = (1 + 2\alpha) \mathbf{i} + (2 - 3\alpha) \mathbf{j} - (1 + 5\alpha) \mathbf{k}$ इस समतल को प्रतिच्छेद करती है या नहीं । यदि करती है, तो प्रतिच्छेद बिन्दु ज्ञात कीजिए । यदि रेखा और समतल प्रतिच्छेद नहीं करते, तो एक ऐसी अन्य रेखा का समीकरण ज्ञात कीजिए जो इस समतल का प्रतिच्छेद करती है ।

- 7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तरों की एक लघु उपपत्ति या एक प्रत्युदाहरण से पुष्टि कीजिए। $5\times 2=10$
 - (क) यदि $T: \mathbf{R}^5 \to \mathbf{R}^3$ एक रैखिक रूपांतरण है, तब \mathbf{R}^5 में एक ऐसा $\mathbf{u} \neq 0$ है जिसके लिए $T(\mathbf{u}) = 0$.
 - (ख) जाति एक के 3 × 3 आव्यूह का एक आइगेनमान शून्य होता है।
 - (ग) प्रसामान्य लांबिक सिद्शों का समुच्चय रैखिकतः स्वतंत्र समुच्चय है।
 - (घ) यदि U और V परिमित-विमीय सिदश समिष्टि W की उपसमिष्टियाँ हैं, तब $\dim (U \cap V) \ge 1$.
 - (ङ) $(a, b) \sim (c, d) \Leftrightarrow (a b) \mid (c d)$ द्वारा \mathbb{Z}^2 पर दिया गया संबंध '~' एक तुल्य संबंध है ।