BPHE-104/PHE-04/PHE-05

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination, December, 2018 BPHE-104/PHE-04 : MATHEMATICAL MĖTHODS IN PHYSICS-I

8
 PHE-05 : MATHEMATICAL METHODS IN PHYSICS-II

Instructions:

(i) Students registered for both BPHE-104/PHE-04 and PHE-05 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer books.
(ii) 'Students who have registered for BPHE-104/PHE-04 or PHE-05 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.

बी.पी.एच.ई.-104/पी.एच.ई.-04/पी.एच.ई.-05
विज्ञान स्नातक (बी.एस सी.)
सत्रांत परीक्षा, दिसम्बर, 2018
बी.पी.एच.ई.-104/पी.एच.ई.-04 : मोतिकी में गणितीय विधियाँ-I

जो छात्र बी.पी.एच.ई.-104/पी.एच.ई.-04 और पी.एच.ई.-05 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्न-पत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें। जो छात्र बी.पी.एच.ई.-104/पी.एच.ई.04 या पी.एच.ई.05 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्न-पत्र के उत्तर, उत्तर पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें।

BPHE-104/PHE-04

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination
December, 2018
PHYSICS

BPHE-104/PHE-04 : MATHEMATICAL METHODS IN PHYSICS-I

Time $: 1 \frac{1}{2}$ hours
Maximum Marks : 25

Note: Attempt all questions. The marks for each question are indicated against it. You can use a calculator or log tables. Symbols have their usual meanings.

1. Answer any three parts :
(a) Determine the unit vector normal to the plane formed by the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$.
(b) Calculate the work done by a force $\vec{F}=x y^{2} \hat{i}+x y \hat{j}$ in moving a particle along the curve $y^{2}=4 x$ from $(0,0)$ to $(1,2)$.
(c) The position vector of a particle moving in space is $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$. Obtain expression for components of its velocity in cylindrical coordinates.
(d) Calculate the directional derivative of $\mathrm{V}=\frac{\mathrm{A}}{\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]^{1 / 2}}$ at the point $(4,4,7)$ in the direction $\hat{n}=\frac{1}{\sqrt{6}}(\hat{i}+\hat{j}-2 \hat{k})$.
(e) Prove that for a vector field $\vec{A}(x, y, z)=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k}$ and a scalar field $\phi(x, y, z)$:

$$
\vec{\nabla} \cdot(\phi \overrightarrow{\mathbf{A}})=\phi \vec{\nabla} \cdot \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{A}} \cdot \vec{\nabla} \phi
$$

2. State Stokes' theorem. Use it for the vector field

$$
\overrightarrow{\mathbf{A}}=P(x, y) \hat{\mathbf{i}}+Q(x, y) \hat{\mathbf{j}} \text { to show that }
$$

$$
\oint_{c}(P d x+Q d y)=\iint_{s}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

OR

State Gauss's divergence theorem. The electric field due to a point charge, q, at a point whose position vector with respect to the location of q is \vec{r}, is given by $\vec{E}=\frac{k q}{r^{3}} \vec{r},(r \neq 0)$, where k is a constant, which depends on the nature of the medium. Calculate the flux of $\overrightarrow{\mathrm{E}}$ through a sphere of radius a, whose centre is at the position of the charge q.
3. The probability that a molecule has speeds between v and $v+d v$ is given by Maxwell-Boltzmann distribution of speeds. For gas molecules of mass m, it is given by

$$
f(v)=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k_{B} T} \quad 0 \leq v \leq \infty
$$

where T is temperature. Show that

$$
\begin{equation*}
\overline{\mathrm{v}}=\sqrt{\frac{8 \mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~m} \pi}} \tag{5}
\end{equation*}
$$

OR

The marks obtained by 6 students in two class tests, denoted by x and y, are as follows :

x	6	5	8	10	4	9
y	8	6	7	10	6	8

Obtain the least square regression line of \mathbf{y} on x .
4. A continuous random variable can assume any value between 2 and 5 . If its density function $\mathrm{f}(\mathrm{x})=\mathrm{k}(1+\mathrm{x})$, calculate $\mathrm{p}(\mathrm{x}<4)$.

OR

The probability of success in a sequence of 300 independent trials is $\frac{3}{4}$. Assuming that the trials form a normal distribution, calculate the mean and the standard deviation of the distribution.

बी.पी.एच.ई.-104/पी.एच.ई.-04

विज्ञान स्नातक (बी.एस सी.)
सत्रांत परीक्षा
दिसम्बर, 2018

भौतिक विज्ञान

बी.पी.एच.ई.-104/पी.एच.ई.-04 : भौतिकी में गणितीय विधियाँ-I

समय : $1 \frac{1}{2}$ घण्टे अधिकतम अंक : 25

नोट : सभी प्रश्नों के उत्तर दीजिए / प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। आप कैल्कुलेटर अथवा लॉग सारणियों का प्रयोग कर सकते हैं। प्रतीकों के अपने सामान्य अर्थ हैं।

1. किन्हीं तीन भागों के उत्तर दीजिए :
$3 \times 4=12$
(क) सदिश $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{k}}$ और $\overrightarrow{\mathbf{b}}=3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ से बने समतल के लंबवत् एकक सदिश ज्ञात कीजिए।
(ख) वक्र $\mathrm{y}^{2}=4 \mathrm{x}$ के अनुदिश एक कण को बिंदु $(0,0)$ से बिंदु $(1,2)$ तक ले जाने में बल $\vec{F}=x^{2} \hat{i}+x y \hat{j}$ द्वारा किया गया कार्य परिकलित कीजिए।
(ग) समष्टि में गतिमान किसी कण का स्थिति सदिश $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ है। बेलनी निर्देशांकों में इसके वेग के घटकों के व्यंजक प्राप्त कीजिए।
(घ) सदिश $\hat{\mathrm{n}}=\frac{1}{\sqrt{6}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ के अनुदिश बिन्दु $(4,4,7)$ पर $V=\frac{A}{\left[x^{2}+y^{2}+z^{2}\right]^{1 / 2}}$ का दिक्-अवकलज परिकलित कीजिए।
(ङ) सदिश क्षेत्र $\overrightarrow{\mathrm{A}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{A}_{1} \hat{\mathrm{i}}+\mathrm{A}_{2} \hat{\mathrm{j}}+\mathrm{A}_{3} \hat{\mathrm{k}}$ और अदिश क्षेत्र $\phi(x, y, z)$ के लिए सिद्ध कीजिए कि :

$$
\vec{\nabla} \cdot(\phi \overrightarrow{\mathbf{A}})=\phi \vec{\nabla} \cdot \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{A}} \cdot \vec{\nabla} \cdot \phi
$$

2. स्टोक्स प्रमेय का कथन लिखिए। इसका प्रयोग कर सदिश क्षेत्र $\overrightarrow{\mathbf{A}}=P(x, y) \hat{\mathbf{i}}+Q(x, y) \hat{\mathbf{j}}$ के लिए सिद्ध कीजिए कि :

$$
\oint_{c}(P d x+Q d y)=\iint_{\mathbf{s}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

अथवा
गाउस डाइवजेंस प्रमेय का कथन लिखिए। एक बिन्दु आवेश q से उत्पन्न विद्युत्-क्षेत्र, किसी बिन्दु, जिसका q के सापेक्ष स्थिति सदिश \vec{r} है, पर निम्नवत् है : $\vec{E}=\frac{k q}{r^{3}} \vec{r},(r \neq 0)$. यहाँ k नियतांक है जो माध्यम की प्रकृति पर निर्भर करता है । त्रिज्या a के गोले, जिसका केन्द्र आवेश q की स्थिति पर है, से होते हुए $\overrightarrow{\mathrm{E}}$ का अभिवाह परिकलित कीजिए। $1+4$
3. गैस के एक अणु की चाल v तथा $v+d v$ के बीच होने की प्रायिकता मैक्सवेल-बोल्ट्समान बंटन द्वारा दी जाती है । द्रव्यमान m के गैस अणुओं के लिए इसका मान है :
$f(v)=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} \mathrm{e}^{-\mathrm{mv}^{2} / 2 k_{B} T} \quad 0 \leq v \leq \infty$
जहाँ T ताप है। सिद्ध कीजिए कि

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathrm{v}}=\sqrt{\frac{8 \mathrm{k}_{\mathrm{B}} T}{\mathrm{~m} \pi}} \tag{5}
\end{equation*}
$$

अथवा

दो कक्षा परीक्षाओं में 6 विद्यार्थियों द्वारा प्राप्त अंको को क्रमश : x तथा y द्वारा निरूपित किया गया है तथा ये निम्नवत् हैं :

x	6	5	8	10	4	.9
y	8	6	7	10	6	8

x पर y की न्यूनतम वर्ग समाश्रयण रेखा प्राप्त कीजिए।
4. एक संतत यादृच्छिक चर 2 और 5 के बीच कोई भी मान ले सकता है । यदि इसका घनत्व फलन $\mathrm{f}(\mathrm{x})=\mathrm{k}(1+\mathrm{x})$ है, तो $\mathrm{p}(\mathrm{x}<4)$ परिकलित कीजिए।

अथवा

300 स्वतंत्र अभिप्रयोगों के अनुक्रम में सफलता की प्रायिकता $\frac{3}{4}$ है । यह मानते हुए कि ये अभिप्रयोग प्रसामान्यत: बंटित हैं, बंटन का माध्य और मानक विचलन परिकलित कीजिए।

PHE-05

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination
December, 2018

PHYSICS
 PHE-05 : MATHEMATICAL METHODS IN PHYSICS-II

Time: $1 \frac{1}{2}$ hours
Maximum Marks : 25
Note: All questions are compulsory. However, internal choices are given. The marks for each question are indicated against it. You may use log tables or non-programmable calculators.

1. Answer any three parts : $3 \times 5=15$
(a) Show that the equation

$$
\left(e^{x}+y-2\right) d x+\left(e^{y}+x-5\right) d y=0
$$

is exact and obtain its solution.
(b) What do you understand by the terms Initial Value Problem and Boundary Value Problem? Solve the equation

$$
\frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=0
$$

subject to the conditions $y(0)=2$ and $\frac{d y(0)}{d x}=4$.
(c) Define ordinary and singular points. When is a singularity said to be regular? Classify the singular points of the equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0
$$

(d) 1-D Schrödinger equation is written as

$$
\left(\frac{\partial}{\partial x^{2}}+\alpha \frac{\partial}{\partial t}\right) \psi(x, t)=0
$$

Use the method of separation of variables and reduce it to a set of ODEs.
(e) (i) Show that the function

$$
z=\ln \left(x^{2}+y^{2}\right)
$$

satisfies the equation

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0 \tag{3}
\end{equation*}
$$

(ii) Classify the following equations by way of order and degree :

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \text { and } \\
& \frac{\partial \rho}{\partial t}+\rho\left(\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial v}{\partial z}\right)=0 .
\end{aligned}
$$

2. A body dropped vertically from a height experiences air resistance. Its equation of motion can be written as $m \frac{d v}{d t}=m g-k v$, where k is a constant and v is instantaneous velocity. Show that the velocity of the body when it hits the ground is given by $v(t)=\frac{m g}{k}-\frac{m g}{k} \exp (-k t / m)$.

OR

According to Newton's law of cooling, the rate at which a body cools is proportional to the temperature difference between the body and its surroundings. If the surroundings are at 300 K and the body cools from 370 K to 340 K in 15 minutes, calculate the time in which it will attain a temperature of 310 K .
3. Express the function $f(t)$ given below in a Fourier series:

$$
\begin{aligned}
& f(t)=\frac{2}{T} t \quad-\frac{T}{2}<t<\frac{T}{2} \\
& \text { and } \quad f(t+T)=f(t)
\end{aligned}
$$

OR

PHE-05 10

The general solution of the diffusion equation

$$
\frac{\partial T}{\partial \mathrm{t}}=\mathrm{k} \frac{\partial^{2} T}{\partial \mathrm{x}^{2}}
$$

for heat flow in a uniform bar of length L is given by

$$
T(x, t)=\left(C_{1} \cos m x+C_{2} \sin m x\right) e^{-k^{2} t} .
$$

Obtain the particular solution under the following conditions :

$$
\begin{align*}
T(0, t) & =\frac{\partial T}{\partial x}(L, t)=0,(t \geq 0) \\
\text { and } T(x, 0) & =T_{0}(0<x<L) \tag{5}
\end{align*}
$$

विज्ञान स्नातक (बी.एस सी.)
 सत्रांत परीक्षा
 दिसम्बर, 2018

भौतिक विज्ञान
 पी.एच.ई.-05 : भौतिकी में गणितीय विधियाँ-II

समय : $1 \frac{1}{2}$ घण्टे
अधिकतम अंक : 25
नोट: सभी प्रश्न अनिवार्य हैं । परन्नु, आंतरिक विकल्प दिए गए हैं। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं । आप लॉग सारणियों अथवा अप्रोग्रामीय कैल्कुलेटरों का प्रयोग कर सकते हैं।

1. किन्हीं तीन भागों के उत्तर दीजिए :
$3 \times 5=15$
(क) सिद्ध कीजिए कि समीकरण

$$
\left(e^{x}+y-2\right) d x+\left(e^{y}+x-5\right) d y=0
$$

यथातथ है तथा इसे हल भी कीजिए।
(ख) प्रारम्भिक मान समस्या तथा परिसीमा मान समस्या पदों से आपका क्या तात्पर्य है ? समीकरण

$$
\frac{d^{2} y(x)}{d x^{2}}+3 \frac{d y(x)}{d x}+2 y(x)=0
$$

को प्रतिबंधों $\mathrm{y}(0)=2$ तथा $\frac{\mathrm{dy}(0)}{\mathrm{dx}}=4$ के तहत हल कीजिए।
(ग) सामान्य तथा विचित्र बिन्दुओं को परिभाषित कीजिए । विचित्रता को कब नियमित कहा जाता है ? समीकरण

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0
$$

के विचित्र बिन्दुओं को वर्गीकृत कीजिए।
(घ) 1-D श्रोडिन्गर समीकरण को निम्नवत् लिखा जाता है :

$$
\left(\frac{\partial}{\partial x^{2}}+\alpha \frac{\partial}{\partial t}\right) \psi(x, t)=0
$$

चर पृथक्करण विधि द्वारा इस समीकरण को ODEs के समुच्चय के रूप में समानीत कीजिए।
(ङ) (i) सिद्ध कीजिए कि फलन

$$
\mathrm{z}=\ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
$$

समीकरण $\frac{\partial^{2} z}{\partial \mathbf{x}^{2}}+\frac{\partial^{2} z}{\partial \mathbf{y}^{2}}=0$
का अनुपालन करता है ।
(ii) निम्नलिखित समीकरणों को कोटि और घात के अनुसार वर्गीकृत कीजिए :

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \text { तथा } \\
& \frac{\partial \rho}{\partial t}+\rho\left(\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial v}{\partial z}\right)=0 .
\end{aligned}
$$

2. जब किसी निकाय को ऊँचाई से गिराया जाता है तो इसमें वायु प्रतिरोध होता है। इसके गति समीकरण को हम निम्नवत् लिख सकते हैं :

$$
m \frac{d v}{d t}=m g-k v
$$

जहाँ k एक अचर है तथा v निकाय का तात्क्षणिक वेग है । सिद्ध कीजिए कि जब यह निकाय पृथ्वी की सतह पर गिरता है तो इसके वेग का व्यंजक निम्नलिखित है :

$$
v(t)=\frac{m g}{k}-\frac{m g}{k} \exp (-k t / m)
$$

अथवा
न्यूटन के शीतलन नियम के अनुसार, किसी पदार्थ के ठंडे होने की दर उसके तथा परिवेश के तापांतर (temperature difference) के समानुपाती होती है । यदि परिवेश का तापमान 300 K हो तथा निकाय 370 K से 340 K ठंडा होने में 15 मिनट का समय ले, तो 310 K तापमान तक ठंडा होने में लगने वाला समय परिकलित कीजिए।
3. फलन

$$
f(t)=\frac{2}{T} t \quad-\frac{T}{2}<t<\frac{T}{2}
$$

तथा $f(t+T)=f(t)$ को फूरिये श्रेणी के पदों में व्यक्त कीजिए।

लंबाई L वाले एक समांग छड़ में प्रवाहित हो रही ऊष्मा के लिए विसरण-समीकरण

$$
\frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial \mathbf{x}^{2}}
$$

का व्यापक हल निम्नलिखित है :

$$
T(x, t)=\left(C_{1} \cos m x+C_{2} \sin m x\right) e^{-k m^{2} t}
$$

निम्नलिखित प्रतिबंधों के लिए इसका विशेष हल प्राप्त कीजिए :

$$
T(0, t)=\frac{\partial T}{\partial x}(L, t)=0,(t \geq 0)
$$

$$
\begin{equation*}
\text { और } T(x, 0)=T_{0}(0<x<L) \tag{5}
\end{equation*}
$$

