No. of Printed Pages : 2

00323

BIEEE-012

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

December, 2018

BIEEE-012 : ACTIVE FILTER DESIGN

 Time: 3 hours
 Maximum Marks: 70

 Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Missing data may be suitably assumed.

1.	A maximally flat magnitude transfer function the Butterworth approximation. Prove that poles lie on a unit circle.	
2.	Prove that the poles for Chebyshev function lie an ellipse.	e on 10
3.	Draw the ideal and practical frequency respo curves for the five filter functions.	onse 10
4.	Discuss Antoniou Gyrators. Realise various fil using Antoniou Gyrators.	ters 5+5=10
5.	Draw and explain the use of bridged T networ active filters.	k in <i>10</i>
BIE	EE-012 1	P.T.O.

- Draw the circuit diagram of a KHN Biquad. Derive the transfer functions and hence the filter parameters.
- Draw the circuit diagram of Tow-Thomas Biquad.
 Derive its transfer function and hence the filter parameters.
- 8. Transform a second order passive RLC high pass filter circuit into an active RC filter using Antoniou Gyrators.
- **9.** Describe how Q enhancement technique is achieved in filters. What is pole frequency error problem ?
- **10.** Write short notes on any *two* of the following: $2 \times 5 = 10$
 - (a) Bessel's Approximation
 - (b) Phase and Group Delay
 - (c) Switched-Capacitor Filters
 - (d) Elementary Ideas of Compensation

BIEEE-012

500

10

10