DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/

 DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI /DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI
Term-End Examination
वロேに3 December, 2018

BET-011 : MATHEMATICS - I

Time: 2 hours
Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt any four questions out of the remaining questions. Use of scientific calculator is permitted.

1. Choose the correct answer from the given four alternatives. (Answer any seven of the following) :
$7 \times 2=14$
(i) In Figure 1, $\angle \mathrm{AOB}=90^{\circ}$, and $\angle \mathrm{ABC}=30^{\circ}$, then $\angle \mathrm{CAO}$ is equal to

Figure 1
(a) 30°
(b) 45°
(c) 90°
(d) 60°
(ii) If $x=a \cos \theta+b \sin \theta$ and $y=a \sin \theta-b \cos \theta$, then $x^{2}+y^{2}$ is equal to
(a) $\mathrm{a}^{2}+\mathrm{b}^{2}$
(b) $\mathrm{a}^{2}-\mathrm{b}^{2}$
(c) $\mathrm{b}^{2}-\mathrm{a}^{2}$
(d) $a^{2}+2 a b$
(iii) The angle between the vectors
$2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ and $-2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is
(a) 90°
(b) 120°
(c) 0°
(d) $\tan ^{-1} \frac{3}{4}$
(iv) A vector with magnitude zero is called
(a) free vector
(b) localised vector
(c) position vector
(d) null vector
(v) Coordinates of any point on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ can be taken as
(a) $(\cos \theta, \sin \theta)$
(b) $(\sin \theta, \cos \theta)$
(c) $(\mathrm{a} \cos \theta, \mathrm{a} \sin \theta)$
(d) $(\mathrm{a} \sin \theta, \mathrm{a} \cos \theta)$
(vi) If a circle passes through (0,0), (a, 0), and $(0, b)$, then the co-ordinates of the centre are
(a) $\left(\frac{a}{2}, \frac{b}{2}\right)$
(b) $\left(\frac{b}{2}, \frac{a}{2}\right)$
(c) (a, b)
(d) (b, a)
(vii) The vertex of the parabola $y^{2}+6 x-2 y+13=0$ is
(a) $(1,-1)$
(b) $(-2,1)$
(c) $\left(\frac{3}{2}, 1\right)$
(d) $\left(-\frac{7}{2}, 1\right)$
(viii) The length of the latus rectum of the parabola $y^{2}=8 x$ is
(a) 1
(b) 8
(c) 2
(d) 4
(ix) The roots of the equation $x^{2}-8 x+12=0$
(a) $(2,6)$
(b) $(3,6)$
(c) $(6,4)$
(d) None of these
(x) If the roots of $\mathrm{px}^{2}+\mathrm{qx}+2=0$ are reciprocal to each other then
(a) $\mathrm{p}=0$
(b) $\mathrm{p}=-2$
(c) $\mathrm{q}=0$
(d) $\mathrm{p}=2$
2. (a) Find out the $16^{\text {th }}$ term of the arithmetic sequence of the series

$$
4,7,10, \ldots
$$

Also compute the sum of series up to the $16^{\text {th }}$ term.
(b) A geometric sequence has first term 3 and last term 48. If each term is twice the previous term, find the number of terms and the sum of the geometric sequence.
(c) If $\mathbf{x}, \mathrm{y}, \mathrm{z}$ are the $\mathbf{p}^{\text {th }}, \mathrm{q}^{\text {th }}$, and $\mathbf{r}^{\text {th }}$ term of an AP and a GP, then prove that

$$
x^{y-z} \cdot y^{z-x} \cdot z^{x-y}=1
$$

3. (a) If $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, and $\overrightarrow{\mathbf{c}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}$ are such that $\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}$ is perpendicular to $\overrightarrow{\mathbf{c}}$, then find the value of λ.
(b) If $\overrightarrow{\mathbf{a}}=5 \hat{\mathbf{i}}-\hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$, then show that the vectors $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$ are perpendicular.
(c) Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \text { and } \\
& \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}} .
\end{aligned}
$$

$$
4+5+5
$$

4. (a) Prove that

$$
\frac{\cot A+\operatorname{cosec} A-1}{\cot A-\operatorname{cosec} A+1}=\operatorname{cosec} A+\cot A
$$

(b) The breadth of a street between two houses is 9 m and the the angle of depression of the top of one as observed from the top of the other which is 12 m high, is 30°. Find the height of the other house.
(c) Find the equation of the line cutting off an intercept -3 from y-axis and inclined at 120° to x -axis.
$4+5+5$
5. (a) Find the eccentricity of the ellipse

$$
\frac{x^{2}}{64}+\frac{y^{2}}{28}=1
$$

(b) Find the focus and the equation of the directrix of parabola whose equation is $\mathrm{y}^{2}=8 \mathrm{x}$.
(c) Compute the value of x, if

$$
2 \log (x+1)-\log \left(x^{2}-1\right)=\log 2 \quad 4+5+5
$$

6. (a) Calculate the co-efficient of x_{10}^{16} in the expansion of $\left(x^{2}-2 x\right)$.
(b) One end of a diameter of the circle $x^{2}+y^{2}-3 x+5 y-4=0$ is $(2,1)$. Find the co-ordinates of the other end.
(c) Compute the value of n, if in the expansion of $(1+a x)^{n}$, the first three terms are $1+12 x+64 x^{2}$.
$4+5+5$
