No. of Printed Pages: 6

BET-011

DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/ DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI Term-End Examination December, 2018

BET-011 : MATHEMATICS - |

Time : 2 hours

Maximum Marks: 70

Note: Question number 1 is compulsory. Attempt any four questions out of the remaining questions. Use of scientific calculator is permitted.

- 1. Choose the correct answer from the given four alternatives. (Answer any **seven** of the following): $7\times2=14$
 - (i) In Figure 1, $\angle AOB = 90^{\circ}$, and $\angle ABC = 30^{\circ}$, then $\angle CAO$ is equal to

Figure 1

- (a) **30°**
- (b) 45°
- (c) 90°
- (d) 60°

BET-011

ł

P.T.O.

If $x = a \cos \theta + b \sin \theta$ and (ii) $y = a \sin \theta - b \cos \theta$, then $x^2 + y^2$ is equal to $a^2 + b^2$ (a) (b) $a^2 - b^2$ (c) $b^2 - a^2$ (d) $a^2 + 2ah$ The angle between the vectors (iii) $2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ and $-2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is (a) 90° **(b)** 120° (c) **0**° (d) $\tan^{-1} \frac{3}{4}$

(iv) A vector with magnitude zero is called

- (a) free vector
- (b) localised vector
- (c) position vector
- (d) null vector
- (v) Coordinates of any point on the circle

 $x^2 + y^2 = a^2$ can be taken as

- (a) $(\cos \theta, \sin \theta)$
- (b) $(\sin \theta, \cos \theta)$
- (c) $(a \cos \theta, a \sin \theta)$
- (d) $(a \sin \theta, a \cos \theta)$

BET-011

- (vi)
 - If a circle passes through (0, 0), (a, 0), and (0, b), then the co-ordinates of the centre are
 - (a) $\left(\frac{a}{2}, \frac{b}{2}\right)$
 - (b) $\left(\frac{b}{2},\frac{a}{2}\right)$
 - (c) (a, b)
 - (d) (b, a)
- (vii) The vertex of the parabola $y^2 + 6x - 2y + 13 = 0$ is
 - (a) (1, -1)
 - (b) (-2, 1)
 - (c) $\left(\frac{3}{2},1\right)$

$$(\mathbf{d}) \quad \left(-\frac{7}{2}, \mathbf{1}\right)$$

(viii) The length of the latus rectum of the parabola $y^2 = 8x$ is

- (a) 1
- **(b)** 8
- (c) 2
- (d) 4

The roots of the equation $x^2 - 8x + 12 = 0$ (**ix**)

- (a) (2, 6)
- (b) (3, 6)
- (c) (6, 4)
- (d) None of these

BET-011

P.T.O.

- (x) If the roots of $px^2 + qx + 2 = 0$ are reciprocal to each other then
 - (a) p = 0
 - (b) p = -2
 - (c) q = 0
 - (d) p = 2
- 2. (a) Find out the 16th term of the arithmetic sequence of the series

4, 7, 10, ...

Also compute the sum of series up to the 16th term.

- (b) A geometric sequence has first term 3 and last term 48. If each term is twice the previous term, find the number of terms and the sum of the geometric sequence.
- (c) If x, y, z are the p^{th} , q^{th} , and r^{th} term of an AP and a GP, then prove that 4+5+5

 x^{y-z} . y^{z-x} . $z^{x-y} = 1$

- 3. (a) If $\overrightarrow{\mathbf{a}} = 2\mathbf{\hat{i}} + 2\mathbf{\hat{j}} + 3\mathbf{\hat{k}}$, $\overrightarrow{\mathbf{b}} = -\mathbf{\hat{i}} + 2\mathbf{\hat{j}} + \mathbf{\hat{k}}$, and $\overrightarrow{\mathbf{c}} = 3\mathbf{\hat{i}} + \mathbf{\hat{j}}$ are such that $\overrightarrow{\mathbf{a}} + \lambda \overrightarrow{\mathbf{b}}$ is perpendicular to $\overrightarrow{\mathbf{c}}$, then find the value of λ .
 - (b) If $\overrightarrow{\mathbf{a}} = 5 \, \widehat{\mathbf{i}} \widehat{\mathbf{j}} 3 \, \widehat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}} = \widehat{\mathbf{i}} + 3 \, \widehat{\mathbf{j}} 5 \, \widehat{\mathbf{k}}$, then show that the vectors $\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}}$ are perpendicular.

BET-011

(c) Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

$$\vec{\mathbf{a}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$$
, and
 $\vec{\mathbf{b}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$.

4+5+5

4. (a) Prove that

 $\frac{\cot A + \csc A - 1}{\cot A - \csc A + 1} = \csc A + \cot A$

- (b) The breadth of a street between two houses is 9 m and the the angle of depression of the top of one as observed from the top of the other which is 12 m high, is 30°. Find the height of the other house.
- (c) Find the equation of the line cutting off an intercept -3 from y-axis and inclined at 120° to x-axis.

5. (a) Find the eccentricity of the ellipse

$$\frac{x^2}{64} + \frac{y^2}{28} = 1$$

- (b) Find the focus and the equation of the directrix of parabola whose equation is $y^2 = 8x$.
- (c) Compute the value of x, if

$$2\log(x+1) - \log(x^2-1) = \log 2$$
 4+5+5

BET-011

5

P.T.O.

- 6. (a) Calculate the co-efficient of x_{10}^{16} in the expansion of $(x^2 2x)$.
 - (b) One end of a diameter of the circle $x^2 + y^2 - 3x + 5y - 4 = 0$ is (2, 1). Find the co-ordinates of the other end.
 - (c) Compute the value of n, if in the expansion of $(1 + ax)^n$, the first three terms are $1 + 12x + 64x^2$. 4+5+5

BET-011