No. of Printed Pages: 3

BIME-005

P.T.O.

B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

Time: 3 hours

BIME-005

December, 2018

BIME-005: MATERIAL SCIENCE

Ti	me : 3	hours Maximum Marks: 7	Maximum Marks: 70	
No		Answer any five questions. All questions carr equal marks.	carry	
1.	(a)	Name them and explain in detail	7	
	(b)	State how carbon content influences the strength and ductility of plain carbon steels.	7	
2.	(a)	Explain the necessity of heat treatment for different steels. Describe the process of quenching.	7	
	(b)	Explain the phenomenon of yielding in mild steel. Why is the yield point in copper not distinct?	7	

1

3.	(a)	What is creep? Draw a typical creep curve and explain the different stages of creep.	7
	(b)	What is meant by metal fatigue? How does it differ from creep?	7
4.	(a)	Briefly describe the Iron-Carbon phase	7
		diagram with the help of a neat sketch.	/
	(b)	Define Carburizing. Describe in brief the	_
		various carburization processes.	7
5.	List	out the various types of furnaces. Explain	
	the	working of cupola furnace with the help of a	
	neat	sketch. Mention its industrial applications.	14
6.	(a)	Name the different methods of hardness	
		testing of a plain carbon steel specimen.	
		Explain Brinell hardness in detail.	7
	(b)	Differentiate between ceramics and glass.	
		What is the glass transition temperature?	
		Explain in brief.	7
7.	(a)	What do you mean by dislocation? Explain	
••	(-)	edge dislocation and line dislocation with a	
		sketch.	7
	(b)	What is corrosion? Describe the factors	
		which accelerate the corrosion process. List	
		out the various techniques used in	
		preventing corrosion of metals.	7

- 8. Write short notes on any **four** of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Slip and Twinning
 - (b) Ductility Fracture
 - (c) Atomic Packing Factor
 - (d) Dielectric Materials
 - (e) Magnetostriction
 - (f) Brittle Material