B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

December, 2018

BME-027 : HEAT AND MASS TRANSFER

Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) What are the different modes of heat transfer ? Explain their potential for occurrence.
(b) The wall of a furnace is constructed from 15 cm thick fire brick having constant thermal conductivity of $1.6 \mathrm{~W} / \mathrm{mK}$. The two sides of the wall are maintained at 1400 K and 1100 K respectively. What is the rate of heat loss through the wall which is $50 \mathrm{~cm} \times 3 \mathrm{~m}$ on a side ?
2. (a) Discuss the various regimes of pool boiling.
(b) A refrigerator stands in a room where air temperature is $21^{\circ} \mathrm{C}$. The surface temperature on the outside of the refrigerator is $16^{\circ} \mathrm{C}$. The sides are 30 mm thick and have an equivalent thermal conductivity of $0.10 \mathrm{~W} / \mathrm{mK}$. The heat transfer co-efficient on the outside is $10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Assuming one-dimensional conduction through the sides, calculate the net heat flow rate and the inside surface temperature of the refrigerator.
3. (a) What is a heat exchanger ? Classify heat exchangers in three broad classes.
(b) Determine heat transfer rate through a spherical copper shell of thermal conductivity of $386 \mathrm{~W} / \mathrm{mK}$, inner radius of 20 mm and outer radius of 60 mm . The inner surface and outer surface temperatures are $200^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. $\quad 5+5$
4. (a) The temperature distribution in a plate of thickness 20 mm is given by

$$
T\left({ }^{\circ} C\right)=6 x^{2}+10 x+4 .
$$

Assuming no heat generation in the plate, calculate heat flux on two sides of the plate. Also calculate rate of temperature change with respect to time, if $\mathbf{k}=300 \mathrm{~W} / \mathrm{mK}$, $\rho=580 \mathrm{~kg} / \mathrm{m}^{3}$, and $\mathrm{C}=420 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
(b) Calculate the heat transfer by radiation from the surface of a $\mathbf{6 0 ~ m m}$ dia spherical lamp (black body) at temperature of $80^{\circ} \mathrm{C}$ into an ambient at $20^{\circ} \mathrm{C}$.
5. Derive one-dimensional time dependent heat conduction equation with internal heat generation and variable thermal conductivity in the Cartesian coordinate system.
6. A wall is constructed of several layers. The first layer consists of brick ($k=0.66 \mathrm{~W} / \mathrm{mK}$), 25 cm thick, the second layer 2.5 cm thick mortar ($\mathrm{k}=0.7 \mathrm{~W} / \mathrm{mK}$), the third layer 10 cm thick limestone ($k=0.66 \mathrm{~W} / \mathrm{mK}$) and outer layer of 1.25 cm thick plaster ($\mathrm{k}=0.7 \mathrm{~W} / \mathrm{mK}$). The heat transfer co-efficients on interior and exterior of the wall fluid layers are $5.8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $11.6 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, respectively.

Find
(i) Overall heat transfer coefficient
(ii) Overall thermal resistance per m^{2}
(iii) Rate of heat transfer per m^{2}, if the interior of the room is at $26^{\circ} \mathrm{C}$ while outside air is at $-7^{\circ} \mathrm{C}$.
7. (a) Define fin effectiveness. When is the use of fins not justified?
(b) Prove that the thermal resistance offered by a hollow long cylinder of constant thermal conductivity is given by

$$
\mathrm{R}_{\mathrm{cyl}}=\frac{\ln \left(\mathrm{r}_{2} / \mathrm{r}_{1}\right)}{2 \pi \mathrm{LK}} .
$$

8. Explain Fick's law of diffusion. What is mass
diffusivity?
10
9. A tank contains a mixture of CO_{2} and N_{2} in the mole proportion of 0.2 and 0.8 at 1 bar and 290 K . It is connected by a duct of cross-sectional area $0.1 \mathrm{~m}^{2}, 0.5 \mathrm{~m}$ long to another tank (as shown in Figure 1) containing mixture of CO_{2} and N_{2} in the molar proportion of 0.8 and 0.2 respectively.

Calculate the diffusion rates of CO_{2} and N_{2}.
Assume diffusivity coefficient
$\mathrm{D}_{\mathrm{AB}}=0.17 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$.

Figure 1
10. Define and explain the physical significance of any two of the following :
$2 \times 5=10$
(a) Schmidt number
(b) Lewis number
(c) Sherwood number

