No. of Printed Pages: 4

BME-009

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI/BTMEVI/BTELVI/BTCSVI/BTECVI

Term-End Examination

00333

December, 2018

BME-009 : COMPUTER PROGRAMMING AND APPLICATIONS

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Find the root of the equation

$$x^3 - x - 1 = 0$$

by Muller's method.

7

(b) Find the roots of equation

$$x^3 - 4x - 9 = 0$$

by bisection method, correct to three decimal places.

7

2. (a) Using Gauss' forward formula, find the value of f(32).

7

Given that:

$$f(25) = 0.2707$$
, $f(30) = 0.3027$

$$f(35) = 0.3386$$
, $f(40) = 0.3794$

BME-009

(b) Solve the given initial value problems:

$$y' = \frac{y - x}{v + x}, \ y(0) = 1$$

Find y(0.5)

taking h = 0.5

by using Runge-Kutta method of order four.

3. (a) Given the table of values:

X	50	52	54	56
<u></u> 3√X	3.684	3.732	3.779	3.865

Use Lagrange's formula to find X when $\sqrt[3]{X} = 3.756$.

- (b) Starting with $x_0 = 0$ find an approximate root of the equation $x^3 4x + 1 = 0$, rounded off to five decimal places using Newton Raphson method.
- 4. (a) Compute roots of the equation $e^{x} = x^{2}$ to an accuracy of 10^{5} using an iterative method.

(b) Find the inverse of matrix

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

using the Gauss-Jordan method.

7

7

5. (a) Perform four iterations of the Jacobi method for solving the system of equations

$$\begin{bmatrix} 5 & 2 & 2 \\ 2 & 5 & 3 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -6 \\ -4 \end{bmatrix}$$

with $x^{(0)} = 0$. Exact solution is $x = (1-1-1)^T$.

- (b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$, using
 - (i) Simpson's $\frac{1}{3}$ rule by taking $h = \frac{1}{4}$
 - (ii) Simpson's $\frac{3}{8}$ rule by taking $h = \frac{1}{6}$.

Hence compute the approximate value of x in each case.

- 6. (a) Write a C⁺⁺ program to print sum and count of non-negative numbers out of a list of 150 numbers.
 - (b) Write a C⁺⁺ program to calculate and print the roots of a quadratic equation

$$ax^2 + bx + c = 0.$$

7

7

7

7.	(a)	Write a C ⁺⁺ program to calculate minimum, maximum and average values of a given set of 'n' numbers.	7
	(b)	(i) Find out errors, if any, in the following code:	2
		if x < y min = x	
		else $\min = y$	
		(ii) Explain the difference between template class and class template.	. 2
		(iii) What is a nested loop? Give an	
		example.	2
		(iv) What is a null object?	1
8.	(a)	Write a C ⁺⁺ program to calculate and print factorial of an integer.	7
	(b)	(i) Write the format and syntax of switch statement.	2
		(ii) What is dynamic binding? Differentiate it from static binding.	2
		(iii) What is overloading in context of C^{++} ?	2
		(iv) List the base file input/output operators in C++.	1