B.Tech. MECHANICAL ENGINEERING
 (COMPUTER INTEGRATED MANUFACTURING)

BTCLEVI/BTMEVI/BTELVI/BTCSVI/BTECVI

Term-End Examination
December, 2018

BME-009 : COMPUTER PROGRAMMING AND APPLICATIONS

Time : 3 hours \quad Maximum Marks : 70

Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Find the root of the equation

$$
x^{3}-x-1=0
$$

by Muller's method.
(b) Find the roots of equation

$$
x^{3}-4 x-9=0
$$

by bisection method, correct to three decimal places.
2. (a) Using Gauss' forward formula, find the - value of f(32).

Given that:

$$
\begin{aligned}
& f(25)=0.2707, f(30)=0.3027 \\
& f(35)=0.3386, f(40)=0.3794
\end{aligned}
$$

(b) Solve the given initial value problems :

$$
y^{\prime}=\frac{y-x}{y+x}, y(0)=1
$$

Find $y(0.5)$
taking $\mathrm{h}=0.5$
by using Runge-Kutta method of order four. 7
3. (a) Given the table of values:

X	50	52	54	56
$\sqrt[3]{\mathrm{X}}$	3.684	3.732	3.779	3.865

Use Lagrange's formula to find X when $\sqrt[3]{\mathrm{X}}=3.756$.
(b) Starting with $\mathrm{x}_{0}=0$ find an approximate root of the equation $x^{3}-4 x+1=0$, rounded off to five decimal places using Newton - Raphson method.
4. (a) Compute roots of the equation $e^{x}=x^{2}$ to an accuracy of 10^{5} using an iterative method.
(b) Find the inverse of matrix

$$
A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

using the Gauss-Jordan method.
5. (a) Perform four iterations of the Jacobi method for solving the system of equations
$\left[\begin{array}{lll}5 & 2 & 2 \\ 2 & 5 & 3 \\ 2 & 1 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ -6 \\ -4\end{array}\right]$
with $x^{(0)}=0$. Exact solution is $\mathrm{x}=(1-1-1)^{\mathrm{T}}$.
(b) Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$; using
(i) Simpson's $\frac{1}{3}$ rule by taking $\mathrm{h}=\frac{1}{4}$
(ii) Simpson's $\frac{3}{8}$ rule by taking $\mathrm{h}=\frac{1}{6}$.

Hence compute the approximate value of x in each case.
6. (a) Write a C^{++}program to print sum and count of non-negative numbers out of a list of 150 numbers.
(b) Write a C^{++}program to calculate and print the roots of a quadratic equation

$$
\begin{equation*}
a x^{2}+b x+c=0 . \tag{7}
\end{equation*}
$$

7. (a) Write a C^{++}program to calculate minimum, maximum and average values of a given set of ' n ' numbers.
(b) (i) Find out errors, if any, in the following code: 2
if $x<y \min =x$ else $\min =y$
(ii) Explain the difference between
template class and class template. 2
(iii) What is a nested loop ? Give an
example.
(iv) What is a null object? $\quad 1$
8. (a) $\quad \begin{aligned} & \text { Write } \mathbf{a C}^{++} \text {program to calculate and print } \\ & \text { factorial of an integer. }\end{aligned} \quad 7$
(b) (i) Write the format and syntax of switch statement.2
(ii) What is dynamic binding ? Differentiate it from static binding. 2
(iii) What is overloading in context of
C^{++}?
(iv) List the base file input/output operators in C^{++}.1
