No. of Printed Pages : 3

BIEL-011

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

00383

Term-End Examination December, 2018

BIEL-011 : LINEAR INTEGRATED CIRCUITS

Time : 3 hours

Maximum Marks: 70

Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Missing data, if any, may be suitably assumed.

1.	(a)	What is a differential amplifier ? Why are differential amplifiers preferred over						
		single-ended amplifiers ?	5					
	(b)	Explain the concept of current mirror with						
		suitable diagram.	5					
2.	(a)	Draw the circuit diagram of a cascade differential amplifier configuration. Explain						
		its operation.	5					
	(b)	Enlist the characteristics of an ideal						
		operational amplifier (op-amp).	5					
BIEL-011		1 P.T.	О.					

- 3. Explain the following terms used regarding an op-amp: $4 \times 2\frac{1}{2} = 10$
 - (a) Supply Voltage Rejection Ratio (SVRR)
 - (b) Input Offset Current
 - (c) Virtual Ground
 - (d) Thermal Drift
- **4.** (a) Discuss about the error voltage. How can it be reduced ?
 - (b) The two input terminals of an op-amp are connected to voltage signals of strength 745 μ V and 740 μ V respectively. The gain of the op-amp in differential mode is 5×10^5 and its CMRR is 80 dB. Calculate the output voltage and percentage error due to common mode.
- 5. Draw the circuit diagram of a non-inverting amplifier. Explain its working and derive the expression for voltage gain. 3+3+4=10
- 6. (a) Draw the circuit diagram of a differentiator using op-amp and explain its working.
 - (b) Calculate the value of output voltage at which op-amp will get saturated shown in Figure 1.

Figure 1

BIEL-011

2

5

5

5

5

7.	(a)	Draw a	nd	explain	\mathbf{the}	working	of			
_	logarithmic amplifier using op-amp.									
	(b)	Describe	the	applicat	ion o	of op-amp	as			
	current to voltage converter.									
8.	(a)	Explain	the	frequenc	y res	sponse of	an			
	internally compensated op-amp.									
	(b) Draw the equivalent circuit diagram of an									
		op-amp for high frequency and explain the								
	the major sources that are responsible for									
		capacitive effects.								
Q	Draw	the circu	it of	a second-	order l	ow pass fi	ltor			
<i>J</i> .	Draw the circuit of a second-order low pass litter.									
	Derive an expression for its transfer function for									
	a Butterworth filter.									
10.	What is meant by a clamping circuit ? Give									
	different types of clamping circuits along wit									
	their output waveforms and explain operation of									
	any one circuit. 3+4+						+4+3	=10		

3+4+3=10

BIEL-011

3