B.Tech. Civil (Construction Management) /

B.Tech. Civil (Water Resources Engineering)

Term-End Examination

0.4413

December, 2018

ET-502(B) : STRUCTURAL ANALYSIS

Time : 3 hours
Maximum Marks : 70

Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. A three-hinged parabolic arch of 20 m span and 4 m central rise carries a point load of 4 kN at 4 m from the left hand hinge. Calculate the horizontal thrust and reactions at A and B. 14

Figure 1
2. A live load of $15 \mathrm{kN} / \mathrm{m}$ moves on a simply supported girder of 15 m . Find the maximum bending moment which can occur at a section 5 metres from the left end. The length of load is greater than the span. Use influence line diagram to solve this problem.
3. A fixed beam of span L is subjected to eccentric point load W as shown in Figure 2. Calculate the fixed end moments by three moment equation. Also draw the bending moment diagram.

Figure 2
4. Analyse the continuous beam shown in Figure 3 by the slope deflection method. The EI is constant throughout the length and supports remain at same level after loading. Also draw the bending moment diagram.

Figure 3
5. Show that the strain energy stored in the bar as shown in Figure 4 is $\frac{P^{2} L}{\pi D^{2} E}$

Figure 4
6. A simply supported beam of span L carries uniformly distributed load of $\mathrm{w} \mathrm{kN} / \mathrm{m}$ over the whole span. If a central prop is introduced at the same level as the end supports, show that the reaction at the prop is $\frac{5 w L}{8}$.

Figure 5
7. (a) Show that shape factor for a circular section is $1 \cdot 70$.
(b) Show that the collapse load for the propped cantilever beam shown in Figure 6 is $11.656 \mathrm{M}_{\mathrm{P}}$
L^{2}

Figure 6
The plastic moment of the section is M_{P}.
8. Compare the buckling strength of two columns, hinged at ends, one of which is having a rectangular section of $30 \mathrm{~mm} \times 120 \mathrm{~mm}$ and the other one of square section $60 \mathrm{~mm} \times 60 \mathrm{~mm}$. Both the columns are of same length and made up of same material. Use Euler's formula.

