B．Tech．Civil（Construction Management）／ B．Tech．Civil（Water Resources Engineering）

Term－End Examination

ロロ1日3 December， 2018

ET－502（A）：STRENGTH OF MATERIALS

Time ： 3 hours
Maximum Marks ： 70
Note：Answer any five questions．All questions carry equal marks．Use of scientific calculator is permitted．Assume any missing data suitably．

1．（a）Explain with the help of neat sketches， various types of supports in beams．
（b）A 3 m solid rectangular bar of cross－section $10 \mathrm{~mm} \times 15 \mathrm{~mm}$ is subjected to a compressive force of 150 kN ．What is the change in length of the bar？Also find the strain and stress produced in the bar．
Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ ．
2．（a）Briefly explain with neat sketches the various types of loads acting on a beam．
ET－502（A）
1
P．T．O．
(b) Draw the shear force and bending moment diagrams for the cantilever beam shown in Figure 1.

$$
4+10
$$

Figure 1
3. (a) Define and explain the following terms :

Longitudinal strain, Lateral strain, and Poisson's ratio.
(b) The tensile stresses at a point across two mutually perpendicular planes are $120 \mathrm{~N} / \mathrm{mm}^{2}$ and $60 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of the minor stress.
4. (a) Define the terms : bending stress in a beam, neutral axis and section modulus.
(b) A simple steel beam of 4 m span carries a uniformly distributed load of $6 \mathrm{kN} / \mathrm{m}$ over its entire span and a point load 2 kN at its centre. If the permissible stress does not exceed 100 MPa , find the cross-section of the beam assuming depth to be twice of breadth.
5. (a) Prove that the maximum shear stress in a circular section of a beam is $\frac{4}{3}$ times the average shear stress.
(b) A rectangular beam 100 mm wide is subjected to a maximum shear force of 100 kN . Find the depth of the beam if the maximum shear stress is $6 \mathrm{~N} / \mathrm{mm}^{2}$. $7+7$
6. (a) Find an expression for the strain energy stored in a body when the load is applied suddenly.
(b) A tensile load of 50 kN is applied suddenly to a circular bar of 5 cm diameter and 4 m long. If the value of $E=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine :
(i) maximum instantaneous stress induced,
(ii) instantaneous elongation in the rod, and
(iii) strain energy absorbed in the rod. 7+7
7. (a) A rod is 3 m long at a temperature of $15^{\circ} \mathrm{C}$. Find the expansion of the rod, when the temperature is raised to $95^{\circ} \mathrm{C}$. If this expansion is prevented, find the stress induced in the material of the rod. Take $\mathrm{E}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=0.000012$ per degree Centigrade.
(b) Find the maximum shear stress induced in a solid circular shaft of diameter 20 cm when the shaft transmits $187 \cdot 5 \mathrm{~kW}$ at 200 rpm .
8. (a) A vessel in the shape of a spherical shell of 1.4 m internal diameter and 4.5 mm thickness is subjected to a pressure of $1.8 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the stress induced in the material of the vessel.
(b) A leaf spring carries a central load of 25 kN . The leaf spring is to be made of 10 steel plates 6 cm wide and 5 mm thick. If the bending stress is limited to $100 \mathrm{~N} / \mathrm{mm}^{2}$, determine :
(i) length of the spring, and
(ii) deflection at the centre of the spring.

Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.

