No. of Printed Pages: 4

ET-302(A)

B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

Term-End Examination

00713

December, 2018

ET-302(A): COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Solve the following system of linear equations by Gauss elimination method:

$$2x - 6y + 8z = 24$$

$$5x + 4y - 3z = 2$$

$$3x + y + 2z = 16$$

(b) Solve the following system of linear equations by Gauss-Seidel iterative method: 7+7

$$5x + 2y + z = 12$$

$$x + 4y + 2z = 15$$

$$x + 2y + 5z = 20$$

2. (a) Find the real root of the following equation using Regula-Falsi method, correct to three decimal places:

$$e^{-x} = \sin x$$

(b) Compute the real root of the following equation by Newton-Raphson method, correct to three decimal places:

$$x \log_{10} x - 1 \cdot 2 = 0$$

3. (a) The following table gives corresponding values of x and y. Using Newton's forward interpolation formula, express y as a function of x. Also find y at x = 2.5.

x	0	1	2	3	4
у	3	6	11	18	27

(b) Given the values:

X	. 0	2	3	6
f(x)	-4	2	14	158

Using Lagrange's formula for interpolation, find the value of f(4).

7 + 7

4. (a) The velocity v (km/min) of a moped which starts from rest, is given at fixed intervals of time t (min) as follows:

t	v
0	0
2	10
4	18
6	25
8	29
10	32
12	20
14	11
16	5
18	2
20	0

Estimate approximately the distance covered in 20 minutes.

(b) Find a real root of the following equation using Bisection method, correct to three decimal places:

$$x^4 - x - 10 = 0$$

5. (a) Solve the following system of linear equations by Jacobi iteration method:

$$8x + y + z = 8$$
$$2x + 4y + z = 4$$
$$x + 3y + 5z = 5$$

7+7

(b) Using Runge-Kutta method of fourth order, solve for y(0.1) and y(0.2) given that

$$\frac{dy}{dx} = xy + y^2$$
, and $y(0) = 1$. 7+7

- **6.** (a) Draw a flow chart to read 20 numbers and to determine its average value.
 - (b) What is a file? Explain the various types of files used. 7+7
- 7. (a) Write a FORTRAN program to calculate and print the factorial of an interger.
 - (b) Write a FORTRAN program that prints the following numbers in decending order: 7+7

 1 2 4 8 16 32 64 128
- 8. (a) Two one-dimensional arrays C and D have 50 elements each. Write a FORTRAN program to compute and print the following quantities:

$$P = \sum_{i=1}^{50} C_i D_i$$

(b) Write a FORTRAN program for temperature conversion that gives the option of converting Fahrenheit to Celsius or Celsius to Fahrenheit and depending upon user's choice carries out the conversion.

7+7