B.Tech. Civil (Construction Management) /

B.Tech. Civil (Water Resources Engineering) /

 B.Tech. (Aerospace Engineering)
Term-End Examination

December, 2018

ET-102 : MATHEMATICS - III

Time : 3 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any other eight questions from question nos. 2 to 15 . Use of calculator is allowed.

1. Fill in the blanks. All parts are to be attempted.
(a) The series $1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\frac{1}{5^{p}} \ldots \quad$ is conditionally convergent when the value of p is \qquad .
(b) Let $\sum_{n} x_{n}$ be a positive term series such that $\underset{n \rightarrow \infty}{\operatorname{Lt}}\left(x_{n} / x_{n+1}\right)=e$, then the test fails to provide a definite information about convergence or divergence for \qquad .
ET-102
(c) A function $\mathrm{f}(\mathrm{x})$ is defined in the interval $0 \leq x \leq \pi$ and if we take $f(-x)=f(x)$ in $-\pi \leq x<0$, then we get an \qquad function for which Fourier series coefficients \qquad are zero.
(d) If $f(x, y)$ and $\frac{\partial}{\partial y} f(x, y)$ are continuous in a closed bounded region D in xy-plane, then IVP $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$, has a unique solution in the interval \qquad .
(e) The Laplace Transform of $\frac{\sin t}{t}$ is \qquad given that $\mathcal{L}\left\{\frac{\sin 2 t}{t}\right\}=\tan ^{-1} \frac{1}{s}$.
(f) The solution of differential equation $\left(D^{2}-2 D+2\right)^{2} y=0$ is \qquad .
(g) The residue of $f(z)=\frac{z+2}{(z+1)^{2}(z-2)}$ at pole $z=2$ is \qquad .
2. Use Laplace Transform to solve the differential equation

$$
\begin{equation*}
\mathrm{y}^{\prime \prime}+9 \mathrm{y}=\mathrm{t} \text { with } \mathrm{y}(0)=0, \mathrm{y}(\pi / 2)=0 . \tag{7}
\end{equation*}
$$

3. (a) Test the series $\sum(-1)^{n} \cdot \sin \left(\frac{1}{n}\right)$ for absolute convergence.

$$
3 \frac{1}{2}
$$

(b) Test, for convergence, the series

$$
\sum \frac{1.3 .5 \ldots .(2 n-1)}{2 \cdot 4.6 \ldots(2 n)} \quad 3 \frac{1}{2}
$$

4. Find a series of cosines of multiples of x which will represent $\mathrm{x} \sin \mathrm{x}$ in the interval $(0, \pi)$.
5. An alternating current, after passing through a rectifier has the form

$$
i(x)=\left\{\begin{array}{ccc}
I_{0} \sin x & \text { for } & 0 \leq x \leq \pi \\
0 & \text { for } & \pi \leq x \leq 2 \pi
\end{array},\right.
$$

where I_{0} is the maximum current and the period is 2π. Express $\mathrm{i}(\mathrm{x})$ in a Fourier Series.
6. Find :

$$
L^{-1}\left[\frac{s-1}{(s+3)\left(s^{2}+2 s+2\right)}\right]
$$

7. Evaluate, using complex function and residue theory,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\sin x}{\left(x^{2}+x+1\right)^{2}} d x \tag{7}
\end{equation*}
$$

8. (a) Prove that

$$
\begin{equation*}
\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\sin ^{2} \theta}=\frac{\pi}{\sqrt{1+a^{2}}}, a>0 \tag{4}
\end{equation*}
$$

(b) Find the bilinear transformation that maps

$$
\mathrm{i}, 1,-1 \text { into } 1,0, \infty .
$$

9. Find a series solution, near $x=0$, of the differential equation

$$
9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0
$$

10. If $y=x$ and $y=x e^{2 x}$ are the two solutions of complementary function of the differential equation

$$
x^{2} y^{\prime \prime}-2 x(1+x) y^{\prime}+2(1+x) y=x^{3}
$$

use method of variation of parameters to find its particular integral.
11. (a) Determine the analytic function

$$
f(z)=u+i v \text { if } u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right) .
$$

(b) Find Laurent series for

$$
f(z)=\frac{7 z-2}{(z+1)(z)(z-2)}
$$

in the annulus $0<|z+1|<1$.
12. Find the temperature $u(x, t)$ in a box of length π, which is perfectly insulated at the ends $x=0$ and $x=\pi$, assuming $c=1$ and $u(x, 0)=x^{2}$.
13. Solve the partial differential equation

$$
\begin{equation*}
\left(D_{x}^{2}-D_{x} D_{y}+D_{y}-1\right) z=\cos (x+2 y)+e^{y}+x y+1 \tag{7}
\end{equation*}
$$

14. Find the characteristic function, transfer function, frequency response function and characteristic roots of the equation

$$
\left(D^{2}+2 D+7\right) x=f
$$

Test it for stability.
15. Find the natural period of a mass-dashpot-spring system if the mass weight is 15 lbs and stretches a steel spring 3 inches. If the spring is stretched an additional 3 inches and then released, determine the subsequent motion.

