MCA (Revised)

Term-End Examination

December, 2018

$1 \ldots 11.1$.

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Find the generating function of the following :

$$
2,4,8,16,32, \ldots
$$

(b) Prove that the number of vertices of odd degree in a graph is always even.
(c) Find the order and degree of the following recurrence relation. Also state whether they are homogeneous or non-homogeneous.
(i) $a_{n}=a_{n-1}^{2}+a_{n-2} a_{n-3} a_{n-4}$
(ii) $\mathrm{d}_{\mathrm{n}}=\mathrm{nd}_{\mathrm{n}-1}+(-1)^{\mathrm{n}}$
(d) Define :
(i) Walk
(ii) Path
(iii) Circuit
in an undirected graph.
3
(e) Solve the recurrence relation
$a_{r}=a_{r-1}+2 a_{r-2}$ with $a_{0}=2$ and $a_{1}=10$.
(f) Is every subgraph of a regular graph regular? Justify.
2. (a) Find the solution of the recurrence relation

$$
\begin{equation*}
a_{n}=3 a_{n-1}+2 n \tag{5}
\end{equation*}
$$

(b) Determine whether the graphs are isomorphic

MCS-033
2
3. (a) Solve the recurrence relation

$$
\mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n}-1}+1 \text { if } \mathrm{n} \geq 2 \text { and } \mathrm{T}_{1}=1
$$

using generating function.
(b) If an undirected graph has exactly two vertices of odd degree there must be a path joining these two vertices.
4. (a) Find the chromatic number of the given graph.

(b) Solve the recurrence relation by substitution method

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+\mathrm{n} \cdot 2^{\mathrm{n}} ; \\
& \mathrm{a}_{0}=1
\end{aligned}
$$

(c) What is connected graph ? Explain with example.
5. (a) Find Eulerian path in the given graph.

(b) Solve: 3

$$
a_{n}-2 a_{n-1}=7^{n}
$$

(c) Given a connected planar graph with $p=4$, $q=6$, calculate the number of regions r.

