BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination December, 2017

03982

ELECTIVE COURSE : MATHEMATICS
MTE-06 : ABSTRACT ALGEBRA

Time: 2 hours

Maximum Marks : 50

(Weightage: 70%)

Note: Question no. 7 is compulsory. Attempt any four questions from questions no. 1 to 6. Use of calculators is not allowed.

- 1. (a) Consider $f : \mathbf{R} \to \mathbf{R}$, defined by f(x) = 2x + 3. Find a mapping $g : \mathbf{R} \to \mathbf{R}$ such that fog (x) = x for all $x \in \mathbf{R}$.
 - (b) Check whether $x^3 + x + 1 + x^2$ is irreducible over **Q** or not.
 - (c) Let H and K be subgroups of a group G.

 State and prove a necessary and sufficient condition for HK to be a subgroup of G.

MTE-06

1

P.T.O.

2

3

5

2. (a) Let G be a group of order 12 and let H and K be subgroups of G of order 4 and 6 respectively. Check whether $H \cap K = \{e\}$ or not.

3

(b) Consider the ring $R = \{f : \mathbf{Z} \to \mathbf{Z}\}$, the set of all mappings from \mathbf{Z} to itself under the usual addition and multiplication defined as the composition of mappings. Find two non-zero mappings f, $g \in R$ such that $f \circ g = 0$ but $g \circ f \neq 0$. Further, let I be the set consisting of those elements h of R with $h(x) \neq 0$ only for finitely many integers. Is I an ideal of R? Give reasons for your answers.

4

(c) Write the permutation (1 2 3) (2 3 5) as a product of disjoint cycles. Is this permutation even? Give reasons for your answer.

3

3. (a) Prove that if G is a group such that G/Z(G) is cyclic, then G is abelian. Further, give an example, with justification, of a group G for which G/Z(G) is not cyclic.

6

(b) Consider the ideal $I = 12\mathbf{Z}$ of \mathbf{Z} . Find a proper ideal J of \mathbf{Z} such that $I + J = \mathbf{Z}$.

2

(c) Give two distinct elements of $\mathbf{R}[x]/< x^3 + 1 >$, with justification.

2

- 4. (a) Show that if H is a subgroup of G, then so is $x H x^{-1}$, where $x \in G$. Also show that H and $x H x^{-1}$ are isomorphic.
- 5
- (b) Obtain the quotient field F of $\mathbf{Z} + (\sqrt{-3})\mathbf{Z}$. Also find the prime subfield of F.
- 5
- 5. (a) Find the nil radical of $(P(X), \cup, \cap)$, where X is a non-empty set.
- 2
- (b) Consider $S = \{\overline{1}, \overline{4}, \overline{11}, \overline{14}\} \subseteq \mathbb{Z}_{15}$. Make a Cayley table for S with respect to *, multiplication modulo 15. Use this table to check whether (S, *) is a group.
- 6
- (c) Give an example, with justification, to show that the fundamental theorem of Algebra does not hold true for Q.
- 2
- 6. (a) Show that $\mathbf{R}[x]/\langle x^2 + 1 \rangle \simeq \mathbf{C}$, using the fundamental theorem of homomorphism for rings.
- 7

3

(b) Find the number of normal subgroups of order 7 and of order 8 of a group of order 35.

MTE-06

3

P.T.O.

- 7. Which of the following statements are *true* and which are *false*? Justify your answers either with a short proof or with a counter-example. 5×2=10
 - (a) If G is a group of order n, then G has an element of order n.
 - (b) $\mathbf{Z}_4 \simeq \mathbf{A}_4$.
 - (c) If $a_0 + a_1 x + ... + a_n x^n \in \mathbf{Z}[x]$ is irreducible over \mathbf{Z} , then $\overline{a}_0 + \overline{a}_1 x + ... + \overline{a}_n x^n$ is irreducible over \mathbf{Z}_8 .
 - (d) If $\phi: R \to S$ is a ring homomorphism between two rings with unity, R and S, then $\phi + 1$; defined by $(\phi + 1)(r) = \phi(r) + 1$, is also a ring homomorphism from R to S.
 - (e) For any two sets A and B, $A \times B = B \times A$.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर, 2017

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-06 : अमूर्त बीजगणित

समय : 2 घण्टे

अधिकतम अंक : 50

(कुल का : 70%)

नोट: प्रश्न सं. 7 करना अनिवार्य है। प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है।

- 1. (क) मान लीजिए कि f(x) = 2x + 3 द्वारा परिभाषित एक फलन $f: \mathbf{R} \to \mathbf{R}$ है । एक फलन $g: \mathbf{R} \to \mathbf{R}$ ऐसा ज्ञात कीजिए कि सभी $x \in \mathbf{R}$ के लिए $f \circ g(x) = x$ हो ।
 - (ख) जाँच कीजिए कि $\bf Q$ पर ${\bf x}^3 + {\bf x} + {\bf 1} + {\bf x}^2$ अखंडनीय है या नहीं ।
 - (ग) मान लीजिए कि H और K किसी समूह G के उपसमूह हैं। HK के G का एक उपसमूह होने के लिए एक आवश्यक और पर्याप्त प्रतिबंध का कथन दीजिए और उसे सिद्ध कीजिए।

5

2

3

- 2. (क) मान लीजिए कि G कोटि 12 वाला एक समूह है तथा मान लीजिए कि H और K क्रमशः कोटियों 4 और 6 वाले G के उपसमूह हैं । जाँच कीजिए कि H ∩ K = {e} है या नहीं ।
- 3
- (ख) वलय $R = \{f: Z \rightarrow Z\}$, सामान्य योग तथा फलनों के संयोजन से परिभाषित गुणन के अंतर्गत Z से स्वयं तक सभी फलनों के समुच्चय पर विचार कीजिए । दो ऐसे शून्येतर फलन $f, g \in R$ ज्ञात कीजिए कि fog = 0 हो परंतु $gof \neq 0$ हो । साथ ही, मान लीजिए कि I, R के ऐसे अवयवों h का समुच्चय है कि $h(x) \neq 0$ केवल परिमित पूर्णांकों के लिए । क्या I, R की एक गुणजावली है ? अपने उत्तरों के लिए कारण दीजिए ।
- 4
- (ग) क्रमचय (1 2 3) (2 3 5) को असंयुक्त चक्रों के एक गुणनफल के रूप में लिखिए । क्या यह क्रमचय सम है ? अपने उत्तर के लिए कारण दीजिए ।
- 3
- 3. (क) सिद्ध कीजिए कि यदि G एक ऐसा समूह है कि G/Z(G) चक्रीय है, तो G आबेली होगा । साथ ही, पुष्टि के साथ, एक ऐसे समूह G का उदाहरण दीजिए जिसके कि लिए G/Z(G) चक्रीय नहीं है ।
- 6
- (ख) Z की गुणजावली I=12Z पर विचार कीजिए । Z की एक ऐसी उचित गुणजावली J ज्ञात कीजिए जिससे कि I+J=Z हो ।
- 2

2

(ग) पुष्टि के साथ, $\mathbf{R}[x]/< x^3 + 1 >$ के दो अलग-अलग अवयव दीजिए।

4.	(क)	दर्शाइए कि यदि G का एक उपसमूह H है, तो $x H x^{-1}$	•
		भी उसका एक उपसमूह है, जहाँ x ∈ G । साथ ही, यह	
•		भी दर्शाइए कि H और x H x ⁻¹ तुल्याकारी हैं ।	5
	(ख)	$\mathbf{Z} + \left(\sqrt{-3}\right)\mathbf{Z}$ का विभाग क्षेत्र \mathbf{F} प्राप्त कीजिए । साथ	
		ही, F का अभाज्य उपक्षेत्र भी ज्ञात कीजिए ।	5
5.	(क)	$({\it \r P}(X), \cup, \cap)$ की शून्य करणी ज्ञात कीजिए, जहाँ X	
		एक अरिक्त समुच्चय है ।	2
	(ख)	$S=\left\{ \overline{1},\overline{4},\overline{11},\overline{14} ight. ight\} \subseteq \mathbf{Z}_{15}$ पर विचार कीजिए ।	
`	1,4	*, गुणन माड्यूलो 15, के सापेक्ष S के लिए एक कैली	
		सारणी बनाइए । इस सारणी के प्रयोग से जाँच कीजिए	
٠.	٠	कि (S, *) एक समूह है या नहीं।	6
	(ग)	यह दर्शाने के लिए कि बीजगणित की आधारभूत प्रमेय	
		Q के लिए सत्य नहीं है पुष्टि सहित एक उदाहरण	
	+2	दीजिए ।	2
6.	(क)	वलयों के लिए समाकारिता के मूल प्रमेय का प्रयोग	
		करते हुए, दर्शाइए कि $\mathbf{R}[x]/< x^2 + 1 > \simeq \mathbf{C}$.	7
	(ख)	कोटि 35 वाले एक समूह के कोटि 7 वाले तथा कोटि 8	

MTE-06

वाले प्रसामान्य उपसमूहों की संख्या ज्ञात कीजिए।

- 7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य ? या तो एक संक्षिप्त उपपत्ति देकर या एक प्रत्युदाहरण देकर, अपने उत्तरों की पुष्टि कीजिए। $5\times2=10$
 - (क) यदि G कोटि n वाला एक समूह है, तो G में कोटि n का एक अवयव होता है ।
 - (ডা) Z₄ ≃ A₄.
 - (ग) यदि $a_0 + a_1 x + ... + a_n x^n \in \mathbf{Z}[x]$, \mathbf{Z} पर अखंडनीय है, तो \mathbf{Z}_8 पर $\bar{a}_0 + \bar{a}_1 x + ... + \bar{a}_n x^n$ अखंडनीय होगा ।
 - (घ) यदि $\phi: R \to S$ दो तत्समकी वलयों R और S के बीच एक वलय समाकारिता है, तो $(\phi+1)(r)=\phi(r)+1$ द्वारा परिभाषित फलन $\phi+1$ भी R से S तक एक वलय समाकारिता है ।
 - (ङ) किन्हीं दो समुच्चयों A और B के लिए $A \times B = B \times A$ होता है ।