No. of Printed Pages: 5

MCSE-004

08045

MCA (Revised)

Term-End Examination December, 2016

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 hours

Maximum Marks: 100

Note: Question no. 1 is **compulsory**. Attempt any **three** questions from the rest. Use of calculator is allowed.

- 1. (a) Let $a = 0.345 \times 10^{0}$, $b = 0.245 \times 10^{-3}$ and $c = 0.432 \times 10^{-3}$. Using 3-digit decimal arithmetic with rounding, prove that $(a + b) + c \neq a + (b + c)$.
 - (b) Obtain the positive root of the equation $x^2 1 = 0$ by Regula-Falsi method, correct up to 2 decimal places.
 - (c) Solve the following linear system of equations using Gauss Elimination method:

$$x_1 + x_2 + x_3 = 3$$

 $4x_1 + 3x_2 + 4x_3 = 8$
 $9x_1 + 3x_2 + 4x_3 = 7$

3

6

(d) From the following data, estimate the value of f(2·25) using Backward Difference Formula:

 $X: \quad 0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \quad 2.5$

f(x): 1.0 3.625 7.0 11.875 19 29.125

- (e) Calculate the value of the integral $\int_{4}^{5\cdot 2} \log x \ dx \ using$
 - (i) Trapezoidal rule,
 - (ii) Simpson's $\frac{1}{3}$ rule.

Assume h = 0.2. Compare the numerical solutions with the exact solution. $2\times4+2=10$

- (f) Explain the concept of Exponential

 Random Variable with a suitable example. 5
- (g) Find a polynomial of degree ≤ 2 with the properties P(1) = 5, P(1.5) = -3, P(3) = 0.

8

2. (a) Given the following system of linear equations, determine the value of each variable using LU decomposition method:

$$6x_1 - 2x_2 = 14$$

 $9x_1 - x_2 + x_3 = 21$
 $3x_1 + 7x_2 + 5x_3 = 9$

(b) Evaluate
$$\int_{1}^{6} [2 + \sin(2\sqrt{x})] dx$$
 using

Simpson's rule with 11 points.

- (c) If a bank receives on an average $\lambda = 6$ bad cheques per day, what is the probability that it receives 4 bad cheques on any given day?
- (a) Evaluate the integral $I = \int_{1}^{2} \frac{2x dx}{1 + x^4}$ using 3. the Gauss-Legendre 1-point, and 2-point

quadrature rules. Compare with the exact solution.

(b) Calculate the correlation coefficient for the following heights (in inches) of fathers (X) and their sons (Y):

> 67 67 X:65 68 69 72 71

A box contains 6 red, 4 white and 5 black (c) balls. A person draws 4 balls from the box at random. Find the probability that among the balls drawn there is at least one ball of each colour.

MCSE-004 3 P.T.O.

8

8

4

8

4. (a) Solve the initial value problem $u' = -2t \ u^2 \ with \ u(0) = 1 \ and \ h = 0.2$ on the interval [0, 1]. Use the fourth order classical Runge-Kutta method.

(b) Estimate the missing term in the following data which represents a polynomial of degree 3:

x :	1	2	3	4	5
f (x):	3	7	?	21	31

10

4

- (c) Evaluate the integral $\int_{0}^{6} (x^{2} + x + 2) dx$ using Trapezoidal rule, with h = 1.0.
- 5. (a) Three groups of children contain respectively 3 girls and 1 boy, 2 girls and 2 boys, and 1 girl and 3 boys. One child is selected at random from each group. Show that the chance that the three selected children consist of 1 girl and 2 boys is $\frac{13}{32}$.

(b) Find the most likely price in Bombay corresponding to the price of ₹ 70 at Kolkata from the following data:

	Kolkata	Bombay
Average Price	65	67
Standard Deviation	2.5	3.5

Correlation coefficient between the prices of commodities in the two cities is 0.8.

6

(c) Fit a straight line to the following data with x as the independent variable:

х	0	1	2	3	4
У	1.0	1.8	3.3	4.5	6.3

Hence find the difference between the actual value of y and the value of y obtained from the fitted curve when x = 3.