No. of Printed Pages: 3

CS-62

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

December, 2016

00385

CS-62 : 'C' PROGRAMMING AND DATA STRUCTURES

Time : 2 hours

Maximum Marks : 60

- Note: Question number 1 is compulsory. Answer any three questions from the rest. All algorithms should be written nearer to 'C' language.
- 1. (a) Write an algorithm for the addition of two matrices.
 - (b) Explain the following functions in 'C' with examples :
 - (i) malloc()

(ii) calloc()

(c) Write an algorithm to add two polynominals when they are represented using linked lists.

CS-62

P.T.O.

7

2

4

	(d)	Differentiate between sequential search and binary search. Write their algorithms and analyze the techniques for complexity.	10
	(e)	Define 'Tree' and 'Binary Tree'. Explain the differences between them.	7
2.	(a)	Give a brief description of operations that can be performed on a stack.	3
	(b)	Discuss the advantages, if any, of a two-way list over a one-way list when deleting a node whose location is given.	2
	(c)	Convert the following infix expression to postfix expression :	5
		A * (B + D) / E - F * (G + H/K)	

3. (a) Insert the following keys in order to construct an AVL tree :

5, 4, 3, 1, 2

(b) What is a Minimum Cost Spanning Tree ? Convert the given graph G with weighted edges to a minimal spanning tree : 5

5

•

- **4.** (a) Write an algorithm for implementation of various operations on a circular queue.
 - (b) Consider the following circular queue (max capacity = 6):

-, A, B, C, -, -

where front = 2 and rear = 4.

Describe the queue as the following operations take place :

- (i) Add D, add E
- (ii) Delete two elements
- (iii) Add F, G, H
- (iv) Delete one element
- (v) Delete two more elements

5. Write short notes on the following :

 $4 \times 2\frac{1}{2} = 10$

5

5

- (a) Adjacency Matrix
- (b) Sorting
- (c) Indexed Sequential File Organization
- (d) Sparse Matrices

CS-62