No. of Printed Pages: 8

PHE-11

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination December, 2014

02982

PHYSICS PHE-11: MODERN PHYSICS

Time: 2 hours

Maximum Marks: 50

Note: Attempt **all** questions. The marks for each question are indicated against it. Symbols have their usual meanings. You may use log table or a calculator.

1. Attempt any five parts:

 $5 \times 2 = 10$

- (a) The life-time of muon in its rest frame is 2 μs. How fast is it moving if its life-time appears to be 20 μs in the lab frame?
- (b) Calculate the kinetic energy of an electron $(m_0 = 0.5 \text{ MeV/c}^2)$ moving with a speed of 0.8 c.
- (c) If an electron is assumed to be confined inside the nucleus of size 10^{-15} m, calculate the uncertainty in its momentum. Take $h = 6.626 \times 10^{-34}$ Js.

- (d) The half-life of a radioactive element is 8 years. How much time will be required for 100 g of the material to disintegrate to 12.5 g?
- (e) Show that for any operator A, i $(A A^{+})$ is Hermitian.
- (f) Which of the following transitions is allowed? Give reasons.

$$^{1}S_{1/2} \longrightarrow ^{1}P_{1/2}$$

$$^{1}S_{1/2} \longrightarrow ^{1}D_{3/2}$$

(g) Give the charge and spin of up and strange quarks.

2. Answer any two parts:

 $2 \times 5 = 10$

(a) A rocket is fired from the Earth at a speed of 0.6 c and another at a speed of 0.4 c in the same direction. What is the relative speed of the second rocket with respect to the observer in the first rocket?

(b) Derive the relativistic energy – momentum relation for a free particle.

(c) An event occurs at x = 20 km, y = 5 km, z = 10 km at t = 0 in a frame of reference S. What are the coordinates of the event in another frame S' moving along the x-axis with a speed 0.8 c?

5

5

3. Answer any one part:

1×10=10

(a) A particle of mass m is confined in a one-dimensional box of length L such that

$$V(x) = 0 0 \le x \le L$$
$$= \infty x < 0 \text{ and } x > L$$

Solve the Schrödinger equation to obtain the energy eigenvalues

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2 m L^2}$$

and the normalized wave function

$$\Psi_{n}(\mathbf{x}) = \sqrt{\frac{2}{L}} \sin \frac{n \pi \mathbf{x}}{L}$$
 10

- (b) (i) Define parity operator and obtain its eigenvalues.
 - (ii) Establish the commutator

$$[L_x, L_y] = i \hbar L_z$$
 5+5

4. Answer any one part:

1×10=10

(a) The wave function of hydrogen atom in the second excited state is given by

$$\Psi(\mathbf{r}, \theta, \phi) = \mathbf{A} \mathbf{r} e^{-\mathbf{r}/2\mathbf{a}_0} \cos \theta$$

Calculate the normalization constant A and the expectation value of the potential energy

$$V(r) = -\frac{1}{4 \pi \epsilon_0} \frac{e^2}{h}$$

(b) State the selection rules for X-ray spectra. Explain with the help of a diagram the transitions that give rise to K_{α} lines. An X-ray tube with a silver anode emits K_{α} line at 21.99 keV and another K_{α} line at 15.8 keV due to the presence of an impurity. Atomic number of silver is 47. Calculate the atomic number of the impurity. 2+3+5=10

5. Answer any *two* parts:

 $2 \times 5 = 10$

5

5

5

- (a) What do you understand by the term radioactive equilibrium? Obtain the condition for transient equilibrium in the decay of ²³⁸U.
- (b) Explain how the synchrocyclotron is used to accelerate particles to a few hundred MeV of energy.
- (c) How is energy released in a controlled manner in a nuclear reactor? Discuss the importance of control rods in a reactor.

PHE-11

विज्ञान स्नातक (बी.एस सी.) सत्रांत परीक्षा दिसम्बर, 2014

भौतिक विज्ञान

पी.एच.ई.-11: आधुनिक भौतिकी

समय : 2 घण्टे

अधिकतम अंक : 50

नोट: सभी प्रश्न कीजिए। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। प्रतीकों के अपने सामान्य अर्थ हैं। आप लॉग सारणी या कैल्कुलेटर का प्रयोग कर सकते हैं।

कोई पाँच भाग हल कीजिए :

 $5 \times 2 = 10$

- (क) विरामावस्था तंत्र में म्यूऑन का जीवनकाल 2 μs है । यदि प्रयोगशाला तंत्र में इसका जीवनकाल 20 μs दिखता है, तो म्यूऑन किस चाल से चल रहा है ?
- (ख) $0.8\,c$ की चाल से गित करने वाले इलेक्ट्रॉन $(m_o = 0.5~MeV/c^2)$ की गितज ऊर्जा परिकलित कीजिए।
- (ग) यदि 10^{-15} m आमाप वाले नाभिक के अन्दर एक इलेक्ट्रॉन परिरुद्ध है, तो इस इलेक्ट्रॉन के संवेग में अनिश्चितता की गणना कीजिए । $h = 6.626 \times 10^{-34} \, \mathrm{Js} \, \, \mathrm{ell}$

- (घ) एक रेडियोऐक्टिव तत्त्व की अर्ध-आयु 8 वर्ष है। 100 g तत्त्व को 12⋅5 g तत्त्व में क्षय होने में कितना समय लगेगा ?
- (ङ) संकारक A के लिए सिद्ध कीजिए कि $i (A A^+)$ हिर्मिटी है।
- (च) निम्नलिखित में से कौन-सा/से संक्रमण अनुमत हैं ?कारण सहित बताइए ।

$$^{1}S_{1/2} \longrightarrow ^{1}P_{1/2}$$

$$^{1}S_{1/2} \longrightarrow ^{1}D_{3/2}$$

(छ) अप और स्ट्रेंज क्वार्क के लिए आवेश और स्पिन बताइए।

कोई *दो* भाग हल कीजिए :

2×5=10

(क) पृथ्वी से एक रॉकेट को 0.6 c की चाल से तथा दूसरे रॉकेट को उसी दिशा में 0.4 c की चाल से छोड़ा जाता है । दूसरे रॉकेट का पहले रॉकेट में बैठे हुए प्रेक्षक के सापेक्ष आपेक्षिकीय चाल क्या होगी ?

5

(ख) एक मुक्त कण के लिए आपेक्षिकीय ऊर्जा – संवेग सम्बन्ध व्युत्पन्न कीजिए।

5

(ग) एक निर्देश तंत्र S में एक घटना t=0, x=20~km, y=5~km, z=10~km पर घटती है। इस घटना के एक अन्य तंत्र S' में क्या निर्देशांक होंगे जो कि x-अक्ष के अनुदिश 0.8~c की चाल से चल रहा है ?

3. कोई *एक* भाग हल कीजिए:

 $1 \times 10 = 10$

(क) द्रव्यमान m वाले एक कण को लम्बाई L वाले एक-विमीय बक्से में सीमित किया (अन्दर रखा) जाता है जहाँ

$$V(x) = 0$$
 $0 \le x \le L$
= ∞ $x < 0$ और $x > L$

ऊर्जा आइगेनमान

$$\mathbf{E_n} = \frac{\hbar^2 \pi^2 \mathbf{n}^2}{2 \, \mathbf{m} L^2}$$

और प्रसामान्यीकृत तरंग फलन

$$\Psi_{n}(\mathbf{x}) = \sqrt{\frac{2}{L}} \sin \frac{n \pi \mathbf{x}}{L}$$

प्राप्त करने के लिए श्रोडिन्गर समीकरण को हल कीजिए।

(ख) (i) पैरिटी संकारक की परिभाषा दीजिए और इसके आइगेनमान प्राप्त कीजिए।

(ii) निम्नलिखित कम्यूटेटर को स्थापित कीजिए :

$$[L_x, L_y] = i \hbar L_z$$
 5+5

4. कोई एक भाग हल कीजिए:

1×10=10

10

(क) हाइड्रोजन परमाणु का दूसरी उत्तेजित अवस्था में तरंग फलन निम्नलिखित है :

$$\Psi(r, \theta, \phi) = A r e^{-r/2a_0} \cos \theta$$

प्रसामान्यीकरण नियतांक A और स्थितिज ऊर्जा

$$V(r) = -\frac{1}{4 \pi \epsilon_0} \frac{e^2}{h}$$

का प्रत्याशा मान परिकलित कीजिए ।

X-किरण स्पेक्ट्रम के वरण नियम बताइए। K	$_{lpha}$ रेखाएँ
उत्सर्जित करने वाले संक्रमणों को चित्र की सह	ायता से
समझाइए । X-किरण नलिका चाँदी के ऐ	नोड में
मिलावटी तत्त्व (अपद्रव्य) होने के कारण 21.9	9 keV
पर एक K_{lpha} रेखा तथा $15.8~{ m keV}$ पर दूसरी 1	${ m K}_{lpha}$ रेखा
उत्पन्न होती है । मिलावटी तत्त्व (अपद्रव्य) का	परमाणु
क्रमांक परिकलित कीजिए । चाँदी का परमाणु	क्रमांक
47 है ।	2+3+5=10
	उत्सर्जित करने वाले संक्रमणों को चित्र की सह समझाइए । X -किरण निलका चाँदी के ऐ मिलावटी तत्त्व (अपद्रव्य) होने के कारण 21.9 पर एक K_{α} रेखा तथा $15.8~{\rm keV}$ पर दूसरी 1 उत्पन्न होती है । मिलावटी तत्त्व (अपद्रव्य) का क्रमांक परिकलित कीजिए । चाँदी का परमाणु

5. कोई *दो* भाग हल कीजिए :

 $2 \times 5 = 10$

5

5

- (क) रेडियोऐक्टिव साम्यावस्था पद से आप क्या समझते हैं ? ²³⁸U क्षय के लिए अल्पस्थायी साम्यावस्था की अवस्था प्राप्त कीजिए ।
- (ख) व्याख्या कीजिए कि किस तरह से सिन्क्रोसाइक्लोट्रॉन को कणों की सैकड़ों MeV ऊर्जा बढ़ाने (त्वरित करके) में उपयोग किया जाता है।
- (ग) नाभिकीय रिएक्टर द्वारा ऊर्जा नियंत्रित तरीके से कैसे उत्पन्न (निर्मुक्त) की जाती है ? रिएक्टर में नियन्त्रक छड़ों का क्या महत्त्व है ?