No. of Printed Pages: 4

BME-053

DIPLOMA IN MECHANICAL ENGINEERING (DME)

Term-End Examination
December, 2014

BME-053: APPLIED THERMAL ENGINEERING

Time: 2 hours

Maximum Marks: 70

Note: Answer any **five** questions. Assume any missing data suitably. Use of scientific calculator is allowed.

- 1. (a) Derive an expression for thermal efficiency of Otto cycle.
 - (b) In an air standard Diesel cycle, the compression ratio is 16 and at the beginning of isentropic compression, the temperature is 15°C and the pressure is 1 bar. Heat is added until the temperature at the end of the constant pressure process is 1480°C. Calculate (i) cut-off ratio (ii) heat supplied per kg of air and (iii) the thermal efficiency of the cycle.

Given : $C_p = 1.005 \text{ kJ/kg-K}$ and

 $C_v = 0.718 \text{ kJ/kg-K}$

7

7

2.	(a)	Give comparison between 2-stroke and	
		4-stroke engines.	4
	(b)	Define the following terms:	10
		(i) Mechanical efficiency	
		(ii) Volumetric efficiency	
		(iii) Indicated thermal efficiency	
		(iv) Brake thermal efficiency	
		(v) Relative efficiency	
		(vi) Specific fuel consumption	
3.	(a)	Explain the basic requirements of IC engine fuels.	4
	(b)	Name the fuels which are used in IC engines. List the advantages and disadvantages of gaseous fuels in IC engines.	10
4.	(a)	Describe the working of a capacitance discharge ignition system with the help of a neat sketch.	7
	(b)	What is the need of ignition advance? Describe the working of centrifugal advance mechanism.	7
5.	(a)	Why are anti-freeze mixtures used with cooling water in radiators of an engine? List the names of different mixtures and also write the properties which a good anti-freeze mixture must possess.	8
	(b)	In which engines is air cooling done? Describe the air cooling system of an engine with the help of a neat sketch.	6

- **6.** (a) Define the following properties of lubricating oils:
 - (i) Flash point
 - (ii) Fire point
 - (iii) Cloud point
 - (iv) Pour point
 - (v) Neutralization number
 - (vi) Film strength
 - (b) List the important parts of lubrication system of an automobile and describe them with the help of suitable sketches.
- 7. (a) Describe the performance of a multi-cylinder CI engine at constant speed and varying load. Show the variation of bsfc, bmep, torque and brake power.
 - (b) A 4-cylinder, 4-stroke engine has been tested to measure its performance. The following data is given:

Cylinder Diameter = 10 cm

Stroke = 12 cm

Speed = 2,000 rpm

Fuel consumption = 16 kg/hr

Brake power = 32.0 kW

Mechanical efficiency = 80%

Calorific value of fuel = 44,000 kJ/kg

Determine (i) bsfc, (ii) indicated mean effective pressure and (iii) brake thermal efficiency.

8

6

8

6

8.	(a)	Draw the gas turbine cycle on p-V diagram	
		and write the names of different processes	
		it consists of. Also write the formula of its	
		thermal efficiency in terms of its pressure	
		ratio.	6
	(b)	Which fuels can be used in gas turbines?	
		Explain in brief.	4
	(c)	State the main characteristics of closed	
		cycle gas turbine plants.	4