BIEEE-001

B.Tech. – VIEP – ELECTRICAL ENGINEERING (BTELVI) 00575 Term-End Examination December, 2014

BIEEE-001 : DYNAMIC SYSTEM SIMULATION

Time : 3 hours Maximum Marks : 7	Time : 3 hours		Maximum Mar	rks : 7	'0
----------------------------------	----------------	--	-------------	---------	----

Note : Attempt any **seven** questions. All questions carry equal marks. Assume suitable data wherever not provided.

1.	What is SIMULINK ? Elaborate its applications in Electrical Engineering.	4+6
2.	Define various configuration parameters of a Simulink model. Also mention the specialities of Simulink as a programming tool.	5+5
3.	Discuss the simulation of system using MATLAB and mention the functions of command window, edit window and figure window in MATLAB software.	10
4.	Explain the procedure to design a Simulink based simulation model for the analysis of a 'Three-phase 120° conduction mode Inverter'.	10
5.	Discuss the blockset based simulation of a digital control system using first order transfer function model.	10
BIE	EE-001 1 P.	T.O.

6.	-	olain the various steps involved in the ulation of a single-phase full-converter	
	feed	ling dynamic load with the help of Simulink.	10
7.		velop the generalized machine model for uction motor using MATLAB/Simulink.	10
8.	-	blain the steps involved in the simulation of RMA process".	10
9.	Wri	te short notes on the following :	5+5
	(a)	Markovian model	
	(b)	Steady-state behaviour of finite population model	1