DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination December, 2014

BIEE-035 : CONTROL SYSTEMS

Time: 2 hours Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks. Question no. 1 is compulsory.

1. Write True/False and justify.

 $7 \times 2 = 14$

- (a) Roots of the closed loop control system can be obtained from Bode plot.
- (b) The polar plot for negative frequencies is the image reflection of positive frequencies plot.
- (c) Phase lag network is used to increase system stability as well as bandwidth.
- (d) The capacitance is not used to fabricate a lag network.
- (e) The steady state error for type-1 system is zero.
- (f) The system $G = \frac{1}{s}$, H = 1 is a type 0 system.

BIEE-035

1

P.T.O.

- (g) Source nodes represent independent variables and have only outgoing branches.
- 2. (a) Draw the block diagram for the current shown in the figure, where v_i and i_L are the input and output variables respectively.

- (b) A thermometer has a time constant of 15.33 sec. It is quickly taken from a temperature 0°C to a water bath having a temperature 100°C. What temperature will be indicated by the thermometer after 60 sec.?
- **3.** (a) The open loop transfer function of a servo system with unity feedback is given by,

$$G(s) = \frac{10}{\left(s+2\right)\left(s+5\right)} \, .$$

Determine the damping ratio, undamped natural frequency of oscillation. What is the percentage overshoot of the response to a unit step input?

7

7

7

(b) Measurements conducted on a servomechanism show the system response to be

$$c(t) = 1 + 0.2 e^{-60t} - 1.2 e^{-10t}$$

when subjected to a unit step input.

- (i) Obtain the expression for the closed loop transfer function.
- (ii) Determine the undamped natural frequency and damping ratio of the system.

7

7

7

- 4. (a) Derive the values of static error coefficients and steady-state error for a type-1 system with unit step input.
 - (b) Sketch the polar plot for

$$G(s) = \frac{20}{s(s+1)(s+2)}$$
.

- **5.** (a) Write a short note on correlation between time domain and frequency domain specification.
 - (b) Apply Routh-Hurwitz criterion to the following equation and investigate the stability.

$$s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 = 0$$
 7

BIEE-035 3 P.T.O.

6. (a) Using Nyquist criterion, determine the stability of the feedback system which has the following open loop transfer function.

G(s) H(s) =
$$\frac{K}{s^2(1 + sT)}$$

- (b) Steady state error increases by using the derivative feedback control. Prove.
- 7. (a) With a suitable diagram show the elements of industrial automatic controller.
 - (b) Draw and explain the torque-speed characteristics of a two-phase servomotor. 7
- 8. (a) Explain the use of synchro pair as an error detector. Give a trade name of synchro.
 - (b) Explain the functional diagram of robotics.

 Also give the classification of robotics.

7