No. of Printed Pages: 7

BIEE-033

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination

01275

December, 2014

BIEE-033: ELECTRICAL CIRCUIT THEORY

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is allowed.

Assume missing data, if any.

1. (a) (i) Define Ohm's Law.

2

(ii) A two terminal device is supplied with a variable voltage source. The across voltage and through current are measured as tabulated below:

Voltage (mV)	Current (µA)		
- 4	- 6		
- 2	- 3		
0	2×10^{-6}		
3	4.5		
5	7.5		

	(1)	Plot charac	the eteristic	current	vs	voltage	2
	(2)			oper reaso Ohm's Lav		ther this	1
	(3)			e effectiv e of this d		ductance	2
(b)	(i)	Define Kirchh mather diagrar	off's natical	hoff's Cur Voltage expre		using and	+2
	(ii)	In the	followi	ng circuit	, deteri	mine i ₁ ,	
		i ₂ and i	<u>ვ</u> :				3
7 A 1	1	$\Omega \underset{>}{\lessapprox} i_1 \checkmark$	2 Ω	i ₂ ↑ 3 Ω	i ₃ ↓	1	A

- 2. (a) Draw and explain the power triangle.
 - (b) In the circuit shown below, determine the resistance, R that will result in the
 - (i) 25 k Ω resistor absorbing 2 mW of power, $3\frac{1}{2}$

(ii) 12-V source delivering 3.6 mW to the circuit:

- 3. (a) (i) State the condition in a network analysis that requires defining a super node.

 $\begin{array}{c|c}
& & & & & \\
& & & & \\
100 \text{ V} & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$

5

(b) (i) Given below is a star connected network.

With proper diagram, show an equivalent delta connected network. Express the resistances of Δ network in terms of R_1 , R_2 and R_3 .

- 2
- (ii) Define Superposition theorem.
- 1

4

(iii) Determine the current i_x through the $20~\Omega$ resistor in the following circuit :

- 4. (a) (i) With the help of diagrams, explain the transformation from a practical voltage source to a practical current source.
 - (ii) Use source transformation to determine R_{TH} in the following circuit: 5

- (b) (i) State Maximum power transfer theorem in terms of Thevenin's Equivalent Impedance.
 - (ii) In the following circuit, what is the maximum average power delivered to the load if it is purely resistive?

BIEE-033

2

2

5. (a) In the following circuit, switch is closed at time, t=0:

Determine the voltage v_2 at $t = 5 \mu s$.

- (b) Define power factor and explain the energy associated with Capacitive and Inductive circuits.
- **6.** (a) Draw a source free parallel RLC circuit. Derive roots of the differential equation in terms of R, L and C.
 - (b) The switch in the following figure is closed at time, t = 0.

Determine the voltage v_c across the capacitor as a function of time.

7

7

7

7. (a) Consider the following figure:

Given $i_R = 20 \angle 25^\circ$ at $\omega = 10$ rad/sec. Determine i_S as a complex forcing function.

- (b) Draw two separate phasor diagrams to represent i_R and i_S in Q. 7(a).
- 8. (a) Using circuit diagram, obtain the condition for resonance in parallel RLC circuit from fundamentals.
 - (b) A parallel resonant circuit has f_0 = 1 kHz, Q_0 = 40, and $|Z_{in}(j\omega_0)|$ = 2 k Ω . Determine its Z_{in} at 1010 Hz.

7

7