No. of Printed Pages: 3

BIELE-004

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
December, 2014

BIELE-004: RF CIRCUITS

Time: 3 hours

00325

Maximum Marks: 70

Note: Attempt any seven questions. Missing data may be suitably assumed. All questions carry equal marks.

Use of scientific calculator is allowed.

- 1. Give the electrical equivalent circuit representation of the following and explain the significance of the terms appearing in the equivalent circuit: $2\times5=10$
 - (a) High-frequency resistor
 - (b) High-frequency wire-wound resistor
- 2. Assuming that the dielectric and the conductor losses in a transmission line are small $(G<<\omega_C \text{ and } R<<\omega_L), \text{ show that the propagation constant } K \text{ can be given as}$

10

$$K = \alpha + j\beta = \frac{1}{2} \left(\frac{R}{Z_0} + GZ_0 \right) + j\omega \sqrt{LC}$$

where $Z_0 = \sqrt{L/C}$ is the characteristic impedance of line in the absence of loss.

- **3.** Derive an expression for the noise-figure of a two-port network.
- 10
- 4. What are the various topologies of low-noise amplifier? Explain them in brief.
- 10
- **5.** Explain the operation of multiplier-based mixers with the help of diagrams. Support your answer with necessary mathematical expressions.
- 10
- **6.** Prove that the general expression for the amplifier efficiency (η) in terms of conduction angle (θ_0) is
- *10*

$$\eta = \frac{\theta_0 - \sin \theta_0}{2 \left[\theta_0 \cos \left(\frac{\theta_0}{2} \right) - 2 \sin \left(\frac{\theta_0}{2} \right) \right]}$$

- 7. Draw the block-diagram representation of an oscillator and derive the expression for Barkhausen Criterion of oscillations.
- 10
- **8.** Explain the operation of combination synthesizers with the help of diagrams and necessary mathematical expressions.
- 10
- **9.** Define RF power amplifiers and explain the operation of any one power amplifier with required expressions.

10

- **10.** Write short notes on any **two** of the following: $2\times5=10$
 - (a) Neutralization
 - (b) Unilateralization
 - (c) Synthesis with static moduli