No. of Printed Pages: 4

BICS-034

DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI)

00295

Term-End Examination December, 2014

BICS-034 : PRINCIPLES OF COMMUNICATION ENGINEERING

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions in all. Question no. 1 is compulsory. All questions carry equal marks.

1. Choose the correct answer:

 $7 \times 2 = 14$

- (a) In a communication system, noise is most likely to affect the signal
 - (i) at the transmitter
 - (ii) in the channel
 - (iii) in the information source
 - (iv) at the destination
- (b) Amplitude modulation is a process of
 - (i) superimposing a low frequency on a high frequency
 - (ii) superimposing a high frequency on a low frequency
 - (iii) carrier interruption
 - (iv) frequency shift and phase shift

BICS-034

1

P.T.O.

- (c) In a low-level AM system, amplifiers following modulated stage must be
 - (i) linear devices
 - (ii) harmonic devices
 - (iii) class C amplifiers
 - (iv) non-linear devices
- (d) The controlled oscillator synthesizer is sometimes preferred over the direct one because
 - (i) it is a simpler piece of equipment
 - (ii) its frequency stability is better
 - (iii) it does not require crystal oscillators
 - (iv) it is relatively free of spurious frequencies
- (e) Which of the following antennas is best excited from a waveguide?
 - (i) Biconical
 - (ii) Horn
 - (iii) Helical
 - (iv) Discone
- (f) One of the following is an indirect way of generating FM. It is the
 - (i) Reactance FET modulator
 - (ii) Varactor diode modulator
 - (iii) Armstrong modulator
 - (iv) Reactance bipolar transistor modulator

(g)	To couple a coaxial line to a parallel-write line, it is best to use (i) Slotted line (ii) Balun (iii) Directional coupler (iv) Quarter-wave transformer	
(a)	List the basic functions of a radio transmitter and the corresponding functions of the radio receiver.	7
(b)	Define amplitude modulation and modulation index. Use a sketch of a sinusoidally modulated AM waveform to help explain the definition.	7
(a)	Define and explain field intensity. Relate it to power density with the concept of characteristic impendance of free space.	7
(b)	What is meant by the diffraction of radio waves? Under what conditions does it arise? Under what conditions does it not arise?	7
appli	pare and contrast the performance and ications of the various types of frequency odulators.	14
(a)	What factors govern the selection of the feed point of a dipole antenna? How do current feed and voltage feed differ?	7
(b)	Describe the end-fire array and its radiation pattern and explain how the pattern can be made unidirectional.	7

3

P.T.O.

2.

3.

4.

5.

BICS-034

- 6. How many different types of transmission lines are there? In what ways do their applications differ? What is it that limits the maximum power that they can handle?
- 14
- 7. (a) What is the basic limitation of modulated transistor amplifiers? When are they used? Are there any circuits which are similar to comparable tube circuits?

7

(b) Why are two different types of bandwidths used in frequency-modulated transmissions? Explain.

7

8. (a) With the aid of the block diagram of a simple receiver, explain the basic superheterodyne principle.

7

- (b) Write short notes on any **two** of the following: $2 \times 3\frac{1}{2} = 7$
 - (i) Application of Loop Antenna
 - (ii) Transverse Electromagnetic Wave
 - (iii) Critical Frequency