BICS-033

DIPLOMA – VIEP – COMPUTER SCIENCE AND ENGINEERING (DCSVI) Term-End Examination December, 2014

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time : 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. Calculator is allowed.

- (a) In Newton-Rapshon method, the process will evidently fail, if f'(x) = 0 is in the neighbourhood of the root. In such cases the _____ method should be used.
 - (b) Higher degree or transcendental equations can be solved by approximate methods.

(True/False)

- (c) Bisection method is also known as Bolzano method. (True/False)
- (d) The negative root of f(x) = 0 is the positive root of $f(-x) \neq 0$. (True/False)

BICS-033

P.T.O.

- (f) The real root of an equation $\cos x = 3x 1$ correct to seven decimal places may be
 - (i) 1.6071016
 - (ii) 0.6071016
 - (iii) 3·6071016
 - (iv) 2.6071016
- (g) Regula-Falsi method is the oldest method of finding the real root of an equation f(x) = 0. (True/False) $7 \times 2 = 14$
- 2. Find a real root of the equation $x^3 2x 5 = 0$ by the method of Regula-Falsi, correct to three decimal places. 14
- 3. (a) Solve the system of equations 28x + 4y z = 32, x + 3y + 10z = 24 and 2x + 17y + 4z = 35 by Gauss elimination method.

BICS-033

2

7

- (b) Solve the following system by the method of factorization :
 x + 3y + 8z = 4, x + 4y + 3z = -2 and x + 3y + 4z = 1
- 4. Solve the following equations by Gauss-Seidel iteration method : 14

8x - 3y + 2z = 20, 4x + 11y - z = 33 and 6x + 3y + 12z = 35

5. Given
$$\sum_{1}^{10} f(x) = 500426$$
, $\sum_{4}^{10} f(x) = 329240$,
 $\sum_{7}^{10} f(x) = 175212$ and $f(10) = 40365$, find $f(1)$. 14

6. The velocity V of a particle at distance S from a point on its path is given by the following table :

S(ft)	0	10	20	30	40	50	60	
V[ft/s]	47	58	64	65	61	52	38	

Estimate the time taken to travel 60 ft using Simpson's 1/3 rule. Compare the result with Simpson's 3/8 rule. 14

P.T.O.

7

7. Use Picard's method to approximate y, when x = 0.1 given that $\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + y = 0$ and $y = 0.5, \frac{dy}{dx} = 0.1$, when x = 0. 14

8. Explain any *four* of the following : $4 \times 3\frac{1}{2} = 14$

(a) Numerical instabilities in computation

- (b) Brent's method
- (c) Linear regression
- (d) Minimization using derivatives
- (e) Runge Kutta method for 2^{nd} order
- (f) Triangularization methods