No. of Printed Pages: 4

BICEE-015

B.Tech. IN CIVIL ENGINEERING (BTCLEVI) Term-End Examination

00345

December, 2014

BICEE-015: WATER RESOURCES SYSTEM PLANNING AND DESIGN

Time: 3 hours

Maximum Marks: 70

Note: Answer any seven questions. All questions carry equal marks. Assume any missing data.

Non-programmable scientific calculator is allowed.

1. Using Simplex algorithm, solve the following linear programming problem:

Maximize $z = 1x_1 + 2x_2 + 3x_3$

subject to

$$1x_1 + 1x_2 + 1x_3 \le 5$$

$$2x_1 + 3x_2 + 4x_3 \le 24$$

10

2. What is multi-objective planning? Discuss its importance in water resource system with suitable example.

10

3.	(a)	Discuss the importance of conjunctive use of water with suitable example.	5		
	(b)	Describe Dynamic Programming and its application in water resources.	5		
4.	(a)	Explain the economic life and physical life of Water Resource Project.	5		
	(b)	Discuss the various data required to be collected for planning of Water Resource Project.	5		
5.	Area of a farming field is 200 hectare and the				
	farmer wants to grow wheat and pulses on this				
	land. It costs ₹ 3/ha to raise wheat crop while for				
	pulses, the cost is ₹ 1/ha. The benefit from				
	wheat crop is ₹ 5/ha and from pulses crop, it is				
	₹ 2/ha. A sum of ₹ 300 is available for raising				
	both crops. Formulate a linear programming				
	problem to find optimal cropping plan. How				
	much area is to be allotted for wheat crop and				
	how much for pulses, so as to maximize the total				
	net benefit ?				
6.	(a)	What are the economic and financial aspects of water resource planning and			
		management?	5		
	(b)	What are the institutional aspects of water			
		resource planning and management?	5		

- 7. (a) Discuss the mass diagram method for estimating the reservoir capacity.
 - (b) Write the scope of Water System Engineering in the Indian context.
- 8. (a) The following table gives the mean monthly flow in a river during a particular calendar year. Calculate the minimum storage demand rate if 40 m³/s, is the overflow rate.

Month	Mean flow	
	(cumec)	
January	60	
February	45	
March	35	
April	25	
May	15	
June	22	
July	50	
August	80	
September	105	
October	90	
November	80	
December	70	

(b) Discuss non-structural method of flood control.

5

5

5

9. Enumerate the procedural steps for planning ground water system.

10

10. Among the following plans, identify the more economical plan at 6% interest rate. Adopt the present worth (Pw) comparison method.

10

	Plan A	Plan B
Cost of equipment	50,000	35,000
Annual O & M cost	2,000	2,500
Salvage value	7,000	6,000
Service life	30 years	15 years