No. of Printed Pages: 4

BICEE-004

B.Tech. IN CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

00285

December, 2014

BICEE-004: STRUCTURAL OPTIMIZATION

Time: 3 hours

Maximum Marks: 70

Note: Answer any **seven** out of **ten** questions. Use of scientific calculator is permitted. Assume any missing data.

- 1. (a) State five engineering applications of optimization.
 - (b) Explain the terms 'design constraints' and 'objective function' in optimization problem with suitable examples.

2. Determine the maximum and minimum values of the function

 $f(x) = 12x^5 - 45x^4 + 40x^3 + 5.$

5

5

10

3. A manufacturing company is engaged in producing three types of products A, B and C.

The production department produces, each day, components sufficient to make 50 units of A, 25 units of B and 30 units of C. The management is confronted with the problem of optimizing the daily production of the products in the assembly department, where only 100 man-hours are available daily for assembling the products. The following additional information is available:

Type of product	Profit contribution per unit of product (₹)	Assembly Time per product (hours)
A	12	0.8
В	20	1.7
C	45	2.5

The company has a daily order commitment for 20 units of product A and a total of 15 units of products B and C. Formulate this problem as a linear programming model so as to maximize the total profit.

10

4. Find the maximum of the function

$$f(x) = 2x_1 + x_2 + 10$$

subject to,

$$g(x) = x_1 + 2x_2^2 = 3$$

using the Lagrange multiplier method.

10

5.	(a)	(a) What is random walk method?				
	(b)	Find the minimum of $f = x(x - 1.5)$ by starting from 0.0 with initial step size of	_			
		0.05.	7			
6.	(a)	Describe the Quadratic interpolation method.	5			
	(b)	Describe the Direct root method.	5			
7.	Determine x_1 and x_2 so as to maximize					
	z = 1	$2x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$	1			
			10			
	subje	ect to, $x_1 \le 8$, $x_1 + x_2 \le 10$, $x_1, x_2 \ge 0$.	10			
8.	Min	imize				
	f (x) :	$= 7x_1 x_2^{-1} + 3x_2 x_3^{-2} + 5x_1^{-3} x_2 x_3 + x_1 x_2 x_3,$				
	$x_1, x_2, x_3 \ge 0$, using the geometric programming					
	met]		10			
9.	(a)	How does dynamic programming				
		conceptually differ from linear programming?	3			
	(b)	Solve the following linear programming by dynamic programming approach.	7			
		Maximize $z = 8x + 7x$				

subject to
$$2x_1 + x_2 \le 8$$

$$5x_1 + 2x_2 \le 15$$

$$x_1, x_2 \ge 0$$

10.	(a)	Briefly	explair	n the	concept	of	
		'Reproduc	tion' in (Genetic op	erators.		3
	(b)	What do you understand by 'Direct Method' in constrained optimization technique?					
	(c)	Describe		steps/pro om Search		being	5

BICEE-004