No. of Printed Pages: 3

BICEE-002

B.Tech. IN CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

00335

December, 2014

BICEE-002: PRESTRESSED CONCRETE

Tu	ne : 3 	hours Maximum Marks :	Maximum Marks : 70					
Note: Answer any five questions. Assume any missing data if necessary. Use of scientific calculator is permitted. Use of IS 1343-1980 is permitted.								
1.	(a)	Write short notes on the following: (i) High strength concrete (ii) High strength steel	8					
	(b)	Why are high strength materials used in prestressed concrete?	6					
2.	(a)	Explain the basic difference between load balancing concept and stress concept.	8					
	(b)	Why should cable profile follow the B.M. profile for economical design?	6					

3. A pretensioned prestressed concrete beam having a rectangular cross-section, 150 mm width and 350 mm depth, has an effective cover of 50 mm. If $f_{ck} = 40 \text{ N/mm}^2$, $f_p = 1600 \text{ N/mm}^2$ and the area of tension steel $A_p = 461 \text{ mm}^2$, then calculate the ultimate flexural strength of the beam.

14

4. Compare the types of losses that can occur in pretensioned and post-tensioned members. List out the various factors influencing the loss of stress due to creep of concrete.

14

- 5. A concrete beam of span 8 m with a cross-section area 32,000 mm² and radius of gyration 72 mm, is prestressed with a parabolic cable having effective stress of 1000 N/mm². The cable is composed of 6 numbers of 7 mm dia wires with an eccentricity of 50 mm at the centre and zero at the supports. Neglecting all losses, find the central deflection of the beam for
 - (a) Self weight + Prestress,
 - (b) Self weight + Presstress + Live load of 2 kN/m.

Assume $E = 38 \text{ kN/mm}^2$ and weight density of concrete $D_o = 24 \text{ kN/m}^3$.

14

- 6. A pretensioned beam of rectangular cross-section 200 mm width by 600 mm depth is prestressed by 5 wires of 7 mm dia at 100 mm from the soffit. The maximum shear force at a particular section is 120 kN. If the modular ratio is 6, calculate the bond stress developed when
 - (a) the section is uncracked.
 - (b) the section is cracked.

14

7. Explain the procedure behind selecting the preliminary dimensions for the thickness of web in prestressed beams with short and long span.

3

14