No. of Printed Pages: 3

BICE-025

Maximum Marks: 70

B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

00235

Time: 3 hours

December, 2014

BICE-025 : HYDRAULICS AND HYDRAULIC MACHINES

Note: Answer any seven questions. Answers are to be written in English only. Assume missing data if

any. Use of calculator is permitted.

- 1. (a) What do you understand by flow in open channels?
 - (b) What are the different types of flow in open channels?
 - (c) Describe any two types of flow in open channels, with suitable examples.
- 2. (a) Describe Chezy's and Manning's equations for uniform flow in open channels. 2
 - (b) Find the bed slope of trapezoidal channel of bed width 4 m, depth of water 3 m and side slope of 2 horizontal to 3 vertical, when the discharge through the channel is 20 m³/sec.

8

2

3.	Find the velocity of flow and rate of flow of water
	through a rectangular channel 6 m wide and
	3 m deep, when it is running full. The channel is
	having bed slope as 1 in 2000. Take Chezy's
	constant $C = 55$.

10

4. Describe the term 'afflux' and the phenomenon of 'backwater curve' in open channel and prove that the length of the backwater curve is given by,

$$\mathbf{L} = \frac{\mathbf{E_2} - \mathbf{E_1}}{i_b - i_e}$$

where L = length of the backwater curve

E₂ = Specific Energy at the end of backwater curve

 E_1 = Specific Energy at the section where water starts rising

 $i_{\rm b}$ = Slope of bed, and

 i_e = Slope of the energy gradient.

10

5. The depth of flow of water, at a certain section of a rectangular channel 2 m wide, is 0.3 m. The discharge through the channel is 1.5 m³/sec. Determine whether a hydraulic jump will occur; and if so, find its height and loss of energy per kg of water.

10

6. Write short notes on the following hydraulic turbines:

(a) Constant head curve

6

(b) Constant speed curve

4

7.	(a)	Describe the term 'Governing of a turbine'.	4
	(b)	What is the basis of selection of a turbine at a particular place?	3
	(c)	Define the specific speed of a turbine. What is the significance of the specific speed?	3
8.	A Kaplan turbine develops 33,500 HP at an average head of 39 metres. Assuming a speed ratio of 2, flow ratio of 0.6, diameter of the boss equal to 0.35 times the diameter of the runner and an overall efficiency of 90%, calculate the diameter and speed of the turbine.		
9.	veloc discl when 20 m	ntrifugal pump is running at 1000 r.p.m. The et vane angle of the impeller is 45° and city of flow at outlet is 2.5 m/sec. The narge through the pump is 200 litres/sec., in the pump is working against a total head of it. If the manometric efficiency of the pump is determine the	
	(a)	diameter of the impeller	5
	(b)	width of the impeller at outlet	5